Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3431943.3432282acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbsConference Proceedingsconference-collections
research-article

Screening Potential Biomarkers of Breast Cancer Based on Bioinformatics

Published: 11 January 2021 Publication History

Abstract

Breast cancer (BRCA) is a common cancer, and incidence is highest among women with cancer. This study chose gene expression profile of GSE65194, GSE42568, GSE7904 and GSE10810 from GEO databases in order to screen potential biomarkers of breast cancer. There are 393 samples, including 331 cancer samples and 62 normal samples. We screened the differentially expressed genes (DEGs) from four groups between BRCA samples and normal samples, then 150 common DEGs were detected, including 37 upregulated genes and 113 downregulated genes. Next this study used Database for Annotation Visualization and Integrated Discovery (DAVID) performed Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis. Moreover, we selected 15 core genes with high connectivity, including CCNB1, CDC20, BUB1B, AURKA, CDK1 and RRM2. The Kaplan Meier plotter (KM plotter) analyzed these six core genes survival rate. Finally, this study analyzed that all six genes were significantly expressed in BRCA. In conclusion, the bioinformatics analysis demonstrated that the six core genes CCNB1, CDK1, BUB1B, CDC20, AURKA and RRM2 might promote the development of BRCA, that could became new biomarkers for diagnosis and medications of BRCA.

References

[1]
C. Kretschmer, A. Sterner-Kock, F. Siedentopf, W. Schoenegg, P. M. Schlag and W. Kennner. 2011. Identification of early molecular markers for breast cancer. Mol Cancer.1,10,15.
[2]
C. Zhang, A. G. Elkahloun, M. Robertson, J. J. Gills, J. Tsurutani, J. H. Shih, J. Fukuoka, M. C. Hollander, C. C. Harris, W. D. Travis, J. Jen and P. A. Dennis. 2011. Loss of cytoplasmic CDK1 predicts poor survival in human lung cancer and confers chemotherapeutic resistance. PLoS One. 8,6,e23849.
[3]
D. E. Hansel, S. Dhara, R. C. Huang, R. Ashfaq, M. Deasel, Y. Shimada, H. S. Bernstein, J. Harmon, M. Brock, A. Forastiere, M. K. Washington, A. Maitra and E. Montgomery. 2005. CDC2/CDK1 expression in esophageal adenocarcinoma and precursor lesions serves as a diagnostic and cancer progression marker and potential novel drug target. Am J Surg Pathol. 3,29,390–399.
[4]
D.W. Huang, B. T. Sherman and R. A. Lempicki. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protosl. 1,4,44–57.
[5]
F. Hongo, N. Takaha, M. Oishi, T. Ueda, T. Nakamura, Y. Naitoh, Y. Naya, K. Kamoi, K. Okihara, T. Matsushima, S. Nakayama, H. Ishihara, T. Sakai and T. Miki. 2014. CDK1 and CDK2 activity is a strong predictor of renal cell carcinoma recurrence. Urol Oncol. 8,3,1240–1246.
[6]
G. Gui, B. Kim, S. Alquwaizani and K. Han. 2015. Assessing protein-protein interactions based on the semantic similarity of interacting proteins. Int J Data Min Bioinform. 1,13,75–83.
[7]
G. X. Hou, P. Liu, J. Yang and S. Wen. 2017. Mining expression and prognosis of topoisomerase isoforms in non-small-cell lung cancer by using Oncomine and Kaplan-Meier plotter. PLoS One. 3,12,e0174515.
[8]
H. Karra, H. Repo, I. Ahonen, E. Lyttyniemi, R. Pitknen, M. Lintunen, T. Kuopio, M. Sderstrm and P. Kronqvist. 2014. Cdc20 and securin overexpression predict short-term breast survival. Brit J Cancer. 12,110,2905–291.
[9]
H. K. Au, W. Eiermann, N. J. Robert, Y. Pienkowski, J. Crown, M. Martin, M. Pawlicki, A. Chan, J. Mackey, J. Glaspy, T. Pintér, M. C. Liu,
[10]
T. Fornander, S. Sehdev, J. M. Ferrero, V. Bée, M. J. Santana, D. P. Miller, D. Lalla and D. J. Slamon. 2013. Health-related quality of life with adjuvant docetaxel-and trastuzumab-based regimens in patients with node-positive and high-risk node-negative, HER2-positive early breast cancer: results from the BCIRG 006 Study. Oncologist. 7,18, 812–818.
[11]
I. M. B. Moura, M. L. Delgado, P. M. A. Silva, C. A. Lopes, J. B. do Amaral, L. S. Monteiro and H. Bousbaa. 2014. High CDC20 expression is associated with poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med. 3,43, 225–231.
[12]
J. Q. Yang, H. X. Liu, Z. Liang, Y. M. Sun and M. Wu. 2014. Over-expression of p53, p21 and Cdc2 in histologically negative surgical margins is correlated with local recurrence of laryngeal squamous cell carcinoma. Int J Clin Expl Pathol. 7,7,4295–4302.
[13]
L. C. Tarrero, G. Ferrero, V. Miano, C. D. Intinis, L. Ricci, M. Arigoni, F. Riccardo, L. Annaratone, I. Castellano, R. A. Calogero, M. Beccuti, F. Cordero and M. D. Bortoli. 2018. Luminal breast cancer-specific circular RNAs uncovered by a novel tool for data analysis. Oncotarget. 18,9,14580–14596.
[14]
L. Fan, K. Strasser-Weippl, J. J. Li, J. St Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao and P. E. Goss. 2014. Breast cancer in China. Lancet Oncol. 15,7, e279–e289.
[15]
M. F. Gayyed, N. M. El-Maqsoud, E. R. Tawfiek, S. A. El Gelany and M. F. Rahman. 2016. A comprehensive analysis of CDC20 overexpression in common malignant tumors from multiple organs: its correlation with tumor grade and stage. Tumor Biol. 1,37,749–762.
[16]
M. H. Manjili, K. Najarian and X. Y. Wang. 2012. Signatures of tumor-immune interactions as biomarkers for breast cancer prognosis. Future Oncol. 6,8,703–711.
[17]
M. M. Hahn, L. Vreede, S. A. Bemelmans, E. van der Looij, A. G. van Kessel, H. K. Schackert, M. J. Ligtenberg, N. Hoogerbrugge, R. P. Kuiper and R. M. de Voer. 2016. Prevalence of germline mutations in the spindle assembly checkpoint gene BUB1B in individuals with early-onset colorectal cancer. Genes Chromosomes Cancer. 11,55,855–863.
[18]
M. Moon and K. Nakai. 2018. Integrative analysis of gene expression and DNA methylation using unsupervised feature extraction for detecting candidate cancer biomarkers. J Bioinform Comput Biol. 2,16,1850006.
[19]
M. Untch, R. D. Gelber, C. Jackisch, M. Procter, J. Baselga, R. Bell, D. Cameron, M. Bari, I. Smith, B. Leyland-Jones, E. de Azambuja, P. Wermuth, R. Khasanov, F. Feng-Yi, C. Constantin, J. I. Mayordomo, C. H. Su, S. Y. Yu, A. Lluch, E. Senkus-Konefka, C. Price, F. Haslbauer, T. Suarez Sahui, V. Srimuninnimit, M. Colleoni, A. S. Coates, M. J. Piccart-Gebhart and A. Goldhirsch. 2008. Estimating the magnitude of trastuzumab effects within patient subgroups in the HERA trial. Ann Oncol. 6,19,1090–1096.
[20]
N. Mansouri, A. Movafagh, A. Sayad, A. Heidary Pour, M. Taheri, S. Soleimani, H. R. Mirzaei, S. Alizadeh Shargh, E. Azargashb, H. Bazmi, Allah H. Moradi, F. Zandnia, M. Hashemi, N. Massoudi and S. A. Mortazavi-Tabatabaei. 2016. Targeting of BUB1B gene expression in sentinel lymph node biopsies of invasive breast cancer in iranian female patients. Asian Pac J Cancer Prev, S3,17,317–321.
[21]
O. Blixt, D. Bueti, B. Burford, D. Allen, S. Julien, M. Hollingsworth, A. Gammerman, I. Fentiman, J. Taylor-Papadimitriou and J. M. Burchell. 2011. Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis. Breast Cancer Res. 2,13,R25.
[22]
P. Hudler, N. K. Britovsek, S. F. Grazio and R. Komel. 2016. Association between polymorphisms in segregation genes BUB1B and TTK and gastric cancer risk. Radiol Oncol. 3,50, 297–307.
[23]
P. Mukhopadhyay, S. Chakraborty, M. P. Ponnusamy, I. Lakshmanan, N. M. Jai and S. K. Batra. 2011. Mucins in pathogenesis of breast cancer: Implications in diagnosis, prognosis and therapy. BBA– Rev Cancer. 2,1815, 224–240.
[24]
P. N. Gabrovska, R. A. Smith, T. Tiang, S. R. Weinstein, L. M. Haupt and L. R. Griffiths. 2012. Development of an eight gene expression profile implicating human breast tumours of all grade. Mol Biol Rep. 4,39,3879–3892.
[25]
P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski and T. Ideker. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 11,13,2498–2504.
[26]
S. Davis and P. S. Meltzer. 2007. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 14,23,1846–1847.
[27]
S. Richter, I. Fetzer, M. Thullner, F. Centler and P. Dittrich. 2015. Towards rule-based metabolic databases: a requirement analysis based on KEGG. Int J Data Min Bioinform. 3,13,289–319.
[28]
T. T. Purmonen, E. Pankalainen, J. H. Turunen, C. Asseburg and J. A. Martikainen. 2011. Short-course adjuvant trastuzumab therapy in early stage breast cancer in Finland: cost-effectiveness and value of information analysis based on the 5-year follow-up results of the FinHer Trial. Acta Oncol. 3,50,344–352.
[29]
W. X. Chen, L. G. Yang, L. Y. Xu, L. Cheng, Q. Qian, L. Sun and Y. L. Zhu. 2019. Bioinformatics analysis revealing prognostic significance of RRM2 gene in breast cancer. Biosci Rep. 4,39.
[30]
W. Zhang, J. Xu, Y. Li and X. Zou. 2018. Integrating network topology, gene expression data and GO annotation information for protein complex prediction. J Bioinform Comput Biol. 1, 17,1.
[31]
X. Fu, G. Chen, Z. D. Cai, C. Wang, Z. Z. Liu, Z. Y. Lin, Y. D. Wu, Y. X. Liang, Z. D. Han, J. C. Liu and W. D. Zhong. 2016. Overexpression of BUB1B contributes to progression of prostate cancer and predicts poor outcome in patients with prostate cancer. Onco Targets Ther. 9,2211–2220.
[32]
Y. Ito, T. Takeda, M. Sakon and M. Monden. 2000. Expression and prognostic role of cyclin-dependent kinas1 (cdc2) in hepatocellular carcinoma. Oncology. 1,59,68–74.
[33]
Y. Park, S. Shackney and R. Schwartz. 2009. Network-based inference of cancer progression from microarray data. IEEE/ACM Trans Comput Biol Bioinform. 2,6,200-112.
[34]
Y. Shen and L. Zhang. 2015. Gene function prediction with knowledge from gene ontology. International Journal of Data Mining and Bioinformatics.1,13, 50–62.
[35]
Z. Tang, C. Li, B. Kang, G. Gao and Z. Zhang. 2017. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. W1,45,W98–W102.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICBBS '20: Proceedings of the 2020 9th International Conference on Bioinformatics and Biomedical Science
October 2020
142 pages
ISBN:9781450388658
DOI:10.1145/3431943
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 January 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Bioinformatics analysis
  2. Biomarkers
  3. Breast cancer
  4. Diagnosis
  5. Differential expressed genes
  6. GEO databases
  7. Gene expression profile

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ICBBS '20

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 60
    Total Downloads
  • Downloads (Last 12 months)9
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media