Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3447555.3465415acmotherconferencesArticle/Chapter ViewAbstractPublication Pagese-energyConference Proceedingsconference-collections
short-paper

Why Your Power System Restoration Does Not Work and What the ICT System Can Do About It

Published: 22 June 2021 Publication History

Abstract

While long-term wide-range blackouts have been studied extensively from a power systems perspective, the role of ICT in the recovery of smart energy systems has not been investigated to the same extent. This paper presents a flexible blackstart service to restore a smart distribution system alongside an impaired ICT system. We formulate the problem of power grid restoration as a distributed optimization problem, taking into account distributed energy resources and remote-controllable switches as optimization variables and employ a multi-agent system to deliver an optimal island configuration. We define an integrated architecture for the interdependent power and ICT system and test our methodology on a realistic distribution system scenario with varying impaired ICT. The results show that the efficiency of the restoration is highly sensitive to the placement of emergency power supply and the coverage of ICT nodes.

References

[1]
Jörg Bremer and Sebastian Lehnhoff. 2017. Decentralized Coalition Formation with Agent-based Combinatorial Heuristics. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal 6 (09 2017), 29. https://doi.org/10.14201/ADCAIJ2017632944
[2]
Joerg Bremer and Sebastian Lehnhoff. 2018. A Cascading Chi-shapes based Decoder for Constraint-handling in Distributed Energy Management. In IJCCI. 184--191. https://doi.org/10.5220/0006926101840191
[3]
Chen Chen, Jianhui Wang, Feng Qiu, and Dongbo Zhao. 2015. Resilient distribution system by microgrids formation after natural disasters. IEEE Transactions on smart grid 7, 2 (2015), 958--966. https://doi.org/10.1109/TSG.2015.2429653
[4]
Markus Eriksson, Mikel Armendariz, Oleg O Vasilenko, Arshad Saleem, and Lars Nordström. 2014. Multiagent-based distribution automation solution for self-healing grids. IEEE Transactions on industrial electronics 62, 4 (2014), 2620--2628. https://doi.org/10.1109/TIE.2014.2387098
[5]
OFFIS e.V. 2020. mango - Modular Python Agent Framework. https://gitlab.com/mango-agents/mango Accessed: 2021-05-18.
[6]
Xiaoyi Fan, Feng Wang, and Jiangchuan Liu. 2016. On Backup Battery Data in Base Stations of Mobile Networks: Measurement, Analysis, and Optimization. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (Indianapolis, Indiana, USA) (CIKM '16). Association for Computing Machinery, New York, NY, USA, 1513--1522. https://doi.org/10.1145/2983323.2983734
[7]
Mostafa Farrokhabadi, Claudio A Cañizares, John W Simpson-Porco, Ehsan Nasr, Lingling Fan, Patricio A Mendoza-Araya, Reinaldo Tonkoski, Ujjwol Tamrakar, Nikos Hatziargyriou, Dimitris Lagos, et al. 2019. Microgrid stability definitions, analysis, and examples. IEEE Transactions on Power Systems 35, 1 (2019), 13--29. https://doi.org/10.1109/TPWRS.2019.2925703
[8]
Romain Favraud, Chia-Yu Chang, and Navid Nikaein. 2018. Autonomous Self-Backhauled LTE Mesh Network With QoS Guarantee. IEEE Access 6 (2018), 4083--4117. https://doi.org/10.1109/ACCESS.2018.2794333
[9]
Adriano Ferreira, Ångela Ferreira, Olivier Cardin, and Paulo Leitão. 2015. Extension of holonic paradigm to smart grids. 15th IFAC Symposium on Information Control Problems in Manufacturing 48, 3 (2015), 1099--1104. https://doi.org/10.1016/j.ifacol.2015.06.230
[10]
Hassan Haes Alhelou, Mohamad Esmail Hamedani-Golshan, Takawira Cuthbert Njenda, and Pierluigi Siano. 2019. A survey on power system blackout and cascading events: Research motivations and challenges. Energies 12, 4 (2019), 682. https://doi.org/10.3390/en12040682
[11]
Aric Hagberg, Dan Schult, and Pieter Swart. 2020. NetworkX Reference. https://networkx.org/documentation/stable/_downloads/networkx_reference.pdf Accessed: 2021-05-18.
[12]
Christian Hinrichs, Sebastian Lehnhoff, and Michael Sonnenschein. 2013. COHDA: A combinatorial optimization heuristic for distributed agents. In International Conference on Agents and Artificial Intelligence. Springer, 23--39. https://doi.org/10.1007/978-3-662-44440-5_2
[13]
Christian Hinrichs, Sebastian Lehnhoff, and Michael Sonnenschein. 2014. A Decentralized Heuristic for Multiple-Choice Combinatorial Optimization Problems. Operations Research Proceedings 2012. https://doi.org/10.1007/978-3-319-00795-3_43
[14]
Christian Hinrichs and Michael Sonnenschein. 2017. A distributed combinatorial optimisation heuristic for the scheduling of energy resources represented by self-interested agents. International Journal of Bio-Inspired Computation 10, 2 (2017), 69--78. https://doi.org/10.1504/IJBIC.2017.085895
[15]
Harri Holma and Antti Toskala. 2011. LTE for UMTS: Evolution to LTE-advanced. John Wiley & Sons, New York, NY, USA.
[16]
Thongchart Kerdphol, Masayuki Watanabe, Yasunori Mitani, Dirk Turschner, and Hans-Peter Beck. 2020. Stability Assessment of Multiple Virtual Synchronous Machines for Microgrid Frequency Stabilization. In 2020 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 1--5. https://doi.org/10.1109/PESGM41954.2020.9281491
[17]
A Korai, J Denecke, JL Rueda Torres, and E Rakhshani. 2019. New control approach for blackstart capability of full converter wind turbines with direct voltage control. In 2019 IEEE Milan PowerTech. IEEE, 1--6. https://doi.org/10.1109/PTC.2019.8810684
[18]
Steffen Meinecke, Nils Bornhorst, Lars-Peter Lauven, Jan-Hendrik Menke, Martin Braun, Simon Drauz, Christian Spalthoff, Dennis Cronbach, Tanja Kneiske, Annika Klettke, Julian Sprey, Tobias van Leeuwen, Albert Moser, Džanan Sarajlić, Chris Kittl, and Christian Rehtanz. 2020. SimBench Documentation - Documentation Version EN-1.0.0. https://simbench.de/wp-content/uploads/2020/01/simbench_documentation_en_1.0.0.pdf.
[19]
Martin Pietsch, Anja Klein, and Florian Steinke. 2020. Merging Microgrids for Optimal Distribution Grid Restoration under Explicit Communication Constraints. In 2020 Resilience Week (RWS). IEEE, 48--54. https://doi.org/10.1109/RWS50334.2020.9241251
[20]
Claudia Quester, Dagmar Sommer, and Claus Verstegen. 2014. Störungen im Stromnetz und Notstromfälle in Kernkraftwerken in den Jahren 2003 bis 2012. Technical Report.
[21]
Ebrahim Rokrok, Miadreza Shafie-khah, Pierluigi Siano, and João PS Catalão. 2017. A decentralized multi-agent-based approach for low voltage microgrid restoration. Energies 10, 10 (2017), 1491. https://doi.org/10.3390/en10101491
[22]
Steffen Schütte, Stefan Scherfke, and Martin Tröschel. 2011. Mosaik: A framework for modular simulation of active components in smart grids. In 2011 IEEE First International Workshop on Smart Grid Modeling and Simulation (SGMS). IEEE, 55--60. https://doi.org/10.1109/SGMS.2011.6089027
[23]
Anurag Sharma, Dipti Srinivasan, and Anupam Trivedi. 2016. A decentralized multi-agent approach for service restoration in uncertain environment. IEEE Transactions on Smart Grid 9, 4 (2016), 3394--3405. https://doi.org/10.1109/PESGM.2018.8586526
[24]
Anurag Sharma, Anupam Trivedi, and Dipti Srinivasan. 2018. Multi-stage restoration strategy for service restoration in distribution systems considering outage duration uncertainty. IET Generation, Transmission & Distribution 12, 19 (2018), 4319--4326. https://doi.org/10.1049/iet-gtd.2018.5915
[25]
Christoph Strunck, Marvin Albrecht, Gerhard Meindl, and Christian Rehtanz. 2019. A Study on the Black Start Process of a real Distribution Network with CHP plants and BESS. EPJ Web of Conferences 217 (01 2019), 01015. https://doi.org/10.1051/epjconf/201921701015
[26]
Union for the Co-ordination of Transmission of Electricity (UCTE). 2010. P5 - Policy 5: Emergency Operations. In UCTE Operation Handbook. UCTE, 1--46.
[27]
Anna Volkova. 2019. Blackout Recovery: Resilient NFV-enabled ICT Infrastructure for the Smart Grid. In Abstracts from the 8th DACH+ Conference on Energy Informatics. Springer, Salzburg, Austria, 73--76. https://doi.org/10.1186/s42162-019-0098-7
[28]
Anna Volkova, Sanja Stark, Hermann de Meer, Sebastian Lehnhoff, and Joerg Bremer. 2019. Towards a blackout-resilient smart grid architecture. In International ETG-Congress 2019; ETG Symposium. VDE, 1--6.
[29]
Matthias Wissner, Bernd Sörries, and Wolfgang Zander. 2020. Die 450 MHz-Frequenz als Wegbereiter der Energiewende. Zeitschrift für Energiewirtschaft 44, 3 (2020), 163--175. https://doi.org/10.1007/s12398-020-00280-y
[30]
Aboelsood Zidan and Ehab F El-Saadany. 2012. A cooperative multiagent framework for self-healing mechanisms in distribution systems. IEEE transactions on smart grid 3, 3 (2012), 1525--1539. https://doi.org/10.1109/TSG.2012.2198247

Cited By

View all
  • (2024)Mango.jl: A Julia-Based Multi-Agent Simulation FrameworkJournal of Open Source Software10.21105/joss.070989:102(7098)Online publication date: Oct-2024
  • (2024)Distributed Multi-objective Optimization in Cyber-Physical Energy SystemsACM SIGEnergy Energy Informatics Review10.1145/3666043.36660464:2(7-18)Online publication date: 24-May-2024
  • (2024)Towards Forming Optimal Communication Network for Effective Power System RestorationIEEE Transactions on Network and Service Management10.1109/TNSM.2024.342920421:5(5250-5259)Online publication date: Oct-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
e-Energy '21: Proceedings of the Twelfth ACM International Conference on Future Energy Systems
June 2021
528 pages
ISBN:9781450383332
DOI:10.1145/3447555
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 June 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. communication network restoration
  2. distributed optimization
  3. distribution grid restoration
  4. multi-agent system

Qualifiers

  • Short-paper
  • Research
  • Refereed limited

Funding Sources

Conference

e-Energy '21

Acceptance Rates

Overall Acceptance Rate 160 of 446 submissions, 36%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)21
  • Downloads (Last 6 weeks)9
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Mango.jl: A Julia-Based Multi-Agent Simulation FrameworkJournal of Open Source Software10.21105/joss.070989:102(7098)Online publication date: Oct-2024
  • (2024)Distributed Multi-objective Optimization in Cyber-Physical Energy SystemsACM SIGEnergy Energy Informatics Review10.1145/3666043.36660464:2(7-18)Online publication date: 24-May-2024
  • (2024)Towards Forming Optimal Communication Network for Effective Power System RestorationIEEE Transactions on Network and Service Management10.1109/TNSM.2024.342920421:5(5250-5259)Online publication date: Oct-2024
  • (2024)On the Resilience of Mutually Dependent Power and Data Networks2024 14th International Workshop on Resilient Networks Design and Modeling (RNDM)10.1109/RNDM64105.2024.10820386(1-9)Online publication date: 25-Nov-2024
  • (2023)Coupling OMNeT++ and Mosaik for Integrated Co-Simulation of ICT-Reliant Smart GridsACM SIGEnergy Energy Informatics Review10.1145/3607120.36071233:1(14-25)Online publication date: 30-Jun-2023
  • (2023)Integrating Agent-Based Control for Normal Operation in Interconnected Power and Communication Systems Simulation2023 IEEE Symposium Series on Computational Intelligence (SSCI)10.1109/SSCI52147.2023.10371932(228-233)Online publication date: 5-Dec-2023
  • (2023)Midas: An Open-Source Framework for Simulation-Based Analysis of Energy SystemsSimulation and Modeling Methodologies, Technologies and Applications10.1007/978-3-031-43824-0_10(177-194)Online publication date: 1-Oct-2023
  • (2022)A Tutorial on Resilience in Smart Grids2022 12th International Workshop on Resilient Networks Design and Modeling (RNDM)10.1109/RNDM55901.2022.9927711(1-14)Online publication date: 19-Sep-2022
  • (2021)Elektrische Verteilnetze resilient ausbauen – Herausforderungen und HandlungsoptionenResilient Expansion of Electricity Distribution Grids—Challenges and ApproachesZeitschrift für Energiewirtschaft10.1007/s12398-021-00316-x46:1(27-39)Online publication date: 15-Dec-2021

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media