Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3450218.3477306acmconferencesArticle/Chapter ViewAbstractPublication PagesfogaConference Proceedingsconference-collections
research-article

Self-adjusting offspring population sizes outperform fixed parameters on the cliff function

Published: 06 September 2021 Publication History

Abstract

In the discrete domain, self-adjusting parameters of evolutionary algorithms (EAs) has emerged as a fruitful research area with many runtime analyses showing that self-adjusting parameters can out-perform the best fixed parameters. Most existing runtime analyses focus on elitist EAs on simple problems, for which moderate performance gains were shown. Here we consider a much more challenging scenario: the multimodal function Cliff, defined as an example where a (1, λ) EA is effective, and for which the best known upper runtime bound for standard EAs is O(n25).
We prove that a (1, λ) EA self-adjusting the offspring population size λ using success-based rules optimises Cliff in O(n) expected generations and O(n log n) expected evaluations. Along the way, we prove tight upper and lower bounds on the runtime for fixed λ (up to a logarithmic factor) and identify the runtime for the best fixed λ as nη for η ≈ 3.9767 (up to sub-polynomial factors). Hence, the self-adjusting (1, λ) EA outperforms the best fixed parameter by a factor of at least n2.9767 (up to sub-polynomial factors).

References

[1]
Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. 2014. Unbiased Black-Box Complexity of Parallel Search. In Proc. of PPSN XIII. Springer, 892--901.
[2]
Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. 2015. Black-box Complexity of Parallel Search with Distributed Populations. In Proc. of FOGA. ACM, 3--15.
[3]
Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal Fixed and Adaptive Mutation Rates for the LeadingOnes Problem. In Proc. of PPSN XI, Vol. 6238. Springer, 1--10.
[4]
Brendan Case and Per Kristian Lehre. 2020. Self-Adaptation in Nonelitist Evolutionary Algorithms on Discrete Problems with Unknown Structure. IEEE Trans. Evol. Comput. 24, 4 (2020), 650--663.
[5]
Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. 2020. When Hypermutations and Ageing Enable Artificial Immune Systems to Outperform Evolutionary Algorithms. Theor. Comput. Sci. 832 (2020), 166--185.
[6]
Duc-Cuong Dang and Per Kristian Lehre. 2016. Self-adaptation of Mutation Rates in Non-elitist Populations. In Proc. of PPSN XIV. Springer, Cham, 803--813.
[7]
Benjamin Doerr. 2020. Theory of Evolutionary Computation: Recent Developments in Discrete Optimization. Springer, Chapter Probabilistic Tools for the Analysis of Randomized Optimization Heuristics, 1--87.
[8]
Benjamin Doerr and Carola Doerr. 2018. Optimal Static and Self-Adjusting Parameter Choices for the (1 + (λ,λ)) Genetic Algorithm. Algorithmica 80, 5 (2018), 1658--1709.
[9]
Benjamin Doerr and Carola Doerr. 2020. Theory of Evolutionary Computation: Recent Developments in Discrete Optimization. Springer, Chapter Theory of Parameter Control for Discrete Black-box Optimization: Provable Performance Gains Through Dynamic Parameter Choices, 271--321.
[10]
Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From Black-Box Complexity to Designing New Genetic Algorithms. In Theor. Comput. Sci., Vol. 567. 87--104.
[11]
Benjamin Doerr, Carola Doerr, and Johannes Lengler. 2019. Self-Adjusting Mutation Rates with Provably Optimal Success Rules. In Proc. of GECCO. ACM.
[12]
Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. 2019. The (1+ λ) Evolutionary Algorithm with Self-Adjusting Mutation Rate. Algorithmica 81, 2 (2019), 593--631.
[13]
Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2018. On the Runtime Analysis of Selection Hyper-Heuristics with Adaptive Learning Periods. In Proc. of GECCO. ACM, 1015--1022.
[14]
Benjamin Doerr, Carsten Witt, and Jing Yang. 2021. Runtime Analysis for Self-adaptive Mutation Rates. Algorithmica 83, 4 (2021), 1012--1053.
[15]
Jun He and Xin Yao. 2004. A Study of Drift Analysis for Estimating Computation Time of Evolutionary Algorithms. Nat. Comput. 3, 1 (2004), 21--35.
[16]
Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2020. On the Choice of the Parameter Control Mechanism in the (1 + (λ, λ)) Genetic Algorithm. In Proc. of GECCO. ACM, 832--840.
[17]
Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2021. Self-Adjusting Population Sizes for Non-Elitist Evolutionary Algorithms: Why Success Rates Matter. In Proc. of GECCO. ACM, 1151--1159.
[18]
Jens Jägersküpper and Tobias Storch. 2007. When the Plus Strategy Outperforms the Comma Strategy and When Not. In Proc. of IEEE FOCI. IEEE, 25--32.
[19]
Thomas Jansen and Dirk Sudholt. 2010. Analysis of an Asymmetric Mutation Operator. Evol. Comput. 18, 1 (2010), 1--26.
[20]
Jörg Lässig and Dirk Sudholt. 2011. Adaptive Population Models for Offspring Populations and Parallel Evolutionary Algorithms. In Proc. of FOGA. ACM, 181--192.
[21]
Per Kristian Lehre and Carsten Witt. 2012. Black-Box Search by Unbiased Variation. Algorithmica 64, 4 (2012), 623--642.
[22]
Johannes Lengler. 2020. A General Dichotomy of Evolutionary Algorithms on Monotone Functions. IEEE Trans. Evol. Comput. 24, 6 (2020), 995--1009.
[23]
Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2019. On the Time Complexity of Algorithm Selection Hyper-Heuristics for Multimodal Optimisation. In Proc. of AAAI, Vol. 33. 2322--2329.
[24]
Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2020. How the Duration of the Learning Period Affects the Performance of Random Gradient Selection Hyper-Heuristics. In Proc. of AAAI, Vol. 34. 2376--2383.
[25]
Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2020. Simple Hyper-heuristics Control the Neighbourhood Size of Randomised Local Search Optimally for LeadingOnes. Evol. Comput. 28, 3 (2020), 437--461.
[26]
Andrea Mambrini and Dirk Sudholt. 2015. Design and Analysis of Schemes for Adapting Migration Intervals in Parallel Evolutionary Algorithms. Evol. Comput. 23, 4 (2015), 559--582.
[27]
Pietro S. Oliveto and Carsten Witt. 2011. Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation. Algorithmica 59, 3 (2011), 369--386.
[28]
Pietro S. Oliveto and Carsten Witt. 2012. Erratum: Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation. ArXiv e-prints (2012). arXiv:1211.7184
[29]
Tiago Paixão, Jorge Pérez Heredia, Dirk Sudholt, and Barbora Trubenová. 2017. Towards a Runtime Comparison of Natural and Artificial Evolution. Algorithmica 78, 2 (2017), 681--713.
[30]
Amirhossein Rajabi and Carsten Witt. 2020. Evolutionary Algorithms with Self-adjusting Asymmetric Mutation. In Proc. of PPSN XVI. Springer, 664--677.
[31]
Amirhossein Rajabi and Carsten Witt. 2020. Self-Adjusting Evolutionary Algorithms for Multimodal Optimization. In Proc. of GECCO. ACM, 1314--1322.
[32]
Amirhossein Rajabi and Carsten Witt. 2021. Stagnation Detection with Randomized Local Search. In EvoCOP. Springer, 152--168. Full version available at http://arxiv.org/abs/2101.12054.
[33]
Jonathan E. Rowe and Dirk Sudholt. 2014. The choice of the offspring population size in the (1, λ) evolutionary algorithm. Theor. Comput. Sci. 545 (2014), 20--38.
[34]
Abraham Wald. 1944. On Cumulative Sums of Random Variables. Ann. Math. Stat. 15, 3 (1944), 283 -- 296.
[35]
Carsten Witt. 2013. Tight Bounds on the Optimization Time of a Randomized Search Heuristic on Linear Functions. Comb. Probab. Comput. 22, 2 (2013), 294--318.

Cited By

View all
  • (2024)Plus Strategies are Exponentially Slower for Planted Optima of Random HeightProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3654088(1587-1595)Online publication date: 14-Jul-2024
  • (2024)The Compact Genetic Algorithm Struggles on Cliff FunctionsAlgorithmica10.1007/s00453-024-01281-wOnline publication date: 17-Nov-2024
  • (2023)Self-adaptation Can Improve the Noise-tolerance of Evolutionary AlgorithmsProceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms10.1145/3594805.3607128(105-116)Online publication date: 30-Aug-2023
  • Show More Cited By

Index Terms

  1. Self-adjusting offspring population sizes outperform fixed parameters on the cliff function

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    FOGA '21: Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms
    September 2021
    130 pages
    ISBN:9781450383523
    DOI:10.1145/3450218
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 September 2021

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. drift analysis
    2. multimodal optimisation
    3. non-elitism
    4. parameter control
    5. runtime analysis

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    FOGA '21
    Sponsor:
    FOGA '21: Foundations of Genetic Algorithms XVI
    September 6 - 8, 2021
    Virtual Event, Austria

    Acceptance Rates

    FOGA '21 Paper Acceptance Rate 10 of 21 submissions, 48%;
    Overall Acceptance Rate 72 of 131 submissions, 55%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)11
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 18 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Plus Strategies are Exponentially Slower for Planted Optima of Random HeightProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3654088(1587-1595)Online publication date: 14-Jul-2024
    • (2024)The Compact Genetic Algorithm Struggles on Cliff FunctionsAlgorithmica10.1007/s00453-024-01281-wOnline publication date: 17-Nov-2024
    • (2023)Self-adaptation Can Improve the Noise-tolerance of Evolutionary AlgorithmsProceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms10.1145/3594805.3607128(105-116)Online publication date: 30-Aug-2023
    • (2023)Comma Selection Outperforms Plus Selection on OneMax with Randomly Planted OptimaProceedings of the Genetic and Evolutionary Computation Conference10.1145/3583131.3590488(1602-1610)Online publication date: 15-Jul-2023
    • (2023)Theoretical and Empirical Analysis of Parameter Control Mechanisms in the (1 + (λ, λ)) Genetic AlgorithmACM Transactions on Evolutionary Learning and Optimization10.1145/35647552:4(1-39)Online publication date: 14-Jan-2023
    • (2023)Self-adjusting Population Sizes for Non-elitist Evolutionary Algorithms: Why Success Rates MatterAlgorithmica10.1007/s00453-023-01153-986:2(526-565)Online publication date: 24-Jul-2023
    • (2023)Runtime Analysis for Permutation-based Evolutionary AlgorithmsAlgorithmica10.1007/s00453-023-01146-886:1(90-129)Online publication date: 26-Jul-2023
    • (2022)More Precise Runtime Analyses of Non-elitist Evolutionary Algorithms in Uncertain EnvironmentsAlgorithmica10.1007/s00453-022-01044-586:2(396-441)Online publication date: 2-Oct-2022
    • (2022)Self-adaptation via Multi-objectivisation: An Empirical StudyParallel Problem Solving from Nature – PPSN XVII10.1007/978-3-031-14714-2_22(308-323)Online publication date: 10-Sep-2022

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media