Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3450439.3451867acmconferencesArticle/Chapter ViewAbstractPublication PageschilConference Proceedingsconference-collections
research-article
Open access

CheXtransfer: performance and parameter efficiency of ImageNet models for chest X-Ray interpretation

Published: 08 April 2021 Publication History

Abstract

Deep learning methods for chest X-ray interpretation typically rely on pretrained models developed for ImageNet. This paradigm assumes that better ImageNet architectures perform better on chest X-ray tasks and that ImageNet-pretrained weights provide a performance boost over random initialization. In this work, we compare the transfer performance and parameter efficiency of 16 popular convolutional architectures on a large chest X-ray dataset (CheXpert) to investigate these assumptions. First, we find no relationship between ImageNet performance and CheXpert performance for both models without pretraining and models with pretraining. Second, we find that, for models without pretraining, the choice of model family influences performance more than size within a family for medical imaging tasks. Third, we observe that ImageNet pretraining yields a statistically significant boost in performance across architectures, with a higher boost for smaller architectures. Fourth, we examine whether ImageNet architectures are unnecessarily large for CheXpert by truncating final blocks from pretrained models, and find that we can make models 3.25x more parameter-efficient on average without a statistically significant drop in performance. Our work contributes new experimental evidence about the relation of ImageNet to chest x-ray interpretation performance.

References

[1]
Ioannis D Apostolopoulos and Tzani A Mpesiana. 2020. Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine (2020), 1.
[2]
Shekoofeh Azizi, Basil Mustafa, Fiona Ryan, Zachary Beaver, Jan Freyberg, Jonathan Deaton, Aaron Loh, Alan Karthikesalingam, Simon Kornblith, Ting Chen, Vivek Natarajan, and Mohammad Norouzi. 2021. Big Self-Supervised Models Advance Medical Image Classification. arXiv:2101.05224 [eess.IV]
[3]
Keno K. Bressem, Lisa Adams, Christoph Erxleben, Bernd Hamm, Stefan Niehues, and Janis Vahldiek. 2020. Comparing Different Deep Learning Architectures for Classification of Chest Radiographs. arXiv:2002.08991 [cs.LG]
[4]
Remi Cadene. 2018. pretrainedmodels 0.7.4. https://pypi.org/project/pretrainedmodels/.
[5]
S. Chen and Q. Zhao. 2019. Shallowing Deep Networks: Layer-Wise Pruning Based on Feature Representations. IEEE Transactions on Pattern Analysis and Machine Intelligence 41, 12 (2019), 3048--3056.
[6]
Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A Survey of Model Compression and Acceleration for Deep Neural Networks. CoRR abs/1710.09282 (2017). arXiv:1710.09282 http://arxiv.org/abs/1710.09282
[7]
François Chollet. 2016. Xception: Deep Learning with Depthwise Separable Convolutions. CoRR abs/1610.02357 (2016). arXiv:1610.02357 http://arxiv.org/abs/1610.02357
[8]
Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Sam Blackwell, Harry Askham, Xavier Glorot, Brendan O'Donoghue, Daniel Visentin, George van den Driessche, Balaji Lakshminarayanan, Clemens Meyer, Faith Mackinder, Simon Bouton, Kareem Ayoub, Reena Chopra, Dominic King, Alan Karthikesalingam, Cían O. Hughes, Rosalind Raine, Julian Hughes, Dawn A. Sim, Catherine Egan, Adnan Tufail, Hugh Montgomery, Demis Hassabis, Geraint Rees, Trevor Back, Peng T. Khaw, Mustafa Suleyman, Julien Cornebise, Pearse A. Keane, and Olaf Ronneberger. 2018. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine 24, 9 (01 Sep 2018), 1342--1350.
[9]
J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248--255.
[10]
Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and Sebastian Thrun. 2017. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 7639 (2017), 115--118.
[11]
Kaiming He, Ross B. Girshick, and Piotr Dollár. 2018. Rethinking ImageNet Pre-training. CoRR abs/1811.08883 (2018). arXiv:1811.08883 http://arxiv.org/abs/1811.08883
[12]
Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the Knowledge in a Neural Network. arXiv:1503.02531 [stat.ML]
[13]
Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik Marklund, Behzad Haghgoo, Robyn L. Ball, Katie S. Shpanskaya, Jayne Seekins, David A. Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz, Bhavik N. Patel, Matthew P. Lungren, and Andrew Y. Ng. 2019. CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. CoRR abs/1901.07031 (2019). arXiv:1901.07031 http://arxiv.org/abs/1901.07031
[14]
Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding up Convolutional Neural Networks with Low Rank Expansions. CoRR abs/1405.3866 (2014). arXiv:1405.3866 http://arxiv.org/abs/1405.3866
[15]
Simon Kornblith, Jonathon Shlens, and Quoc V. Le. 2018. Do Better ImageNet Models Transfer Better? CoRR abs/1805.08974 (2018). arXiv:1805.08974 http://arxiv.org/abs/1805.08974
[16]
Feng Li, Zheng Liu, Hua Chen, Minshan Jiang, Xuedian Zhang, and Zhizheng Wu. 2019. Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm. Translational Vision Science & Technology 8, 6 (11 2019), 4--4. arXiv:https://arvojournals.org/arvo/content_public/journal/tvst/938258/i2164-2591-8-6-4.pdf
[17]
Akinori Mitani, Abigail Huang, Subhashini Venugopalan, Greg S. Corrado, Lily Peng, Dale R. Webster, Naama Hammel, Yun Liu, and Avinash V. Varadarajan. 2020. Detection of anaemia from retinal fundus images via deep learning. Nature Biomedical Engineering 4, 1 (01 Jan 2020), 18--27.
[18]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024--8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
[19]
Maithra Raghu, Chiyuan Zhang, Jon M. Kleinberg, and Samy Bengio. 2019. Transfusion: Understanding Transfer Learning with Applications to Medical Imaging. CoRR abs/1902.07208 (2019). arXiv:1902.07208 http://arxiv.org/abs/1902.07208
[20]
Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan, Daisy Yi Ding, Aarti Bagul, Curtis Langlotz, Katie S. Shpanskaya, Matthew P. Lungren, and Andrew Y. Ng. 2017. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. CoRR abs/1711.05225 (2017). arXiv:1711.05225 http://arxiv.org/abs/1711.05225
[21]
Pranav Rajpurkar, Anirudh Joshi, Anuj Pareek, Phil Chen, Amirhossein Kiani, Jeremy Irvin, Andrew Y Ng, and Matthew P Lungren. 2020. CheXpedition: investigating generalization challenges for translation of chest x-ray algorithms to the clinical setting. arXiv preprint arXiv:2002.11379 (2020).
[22]
Pranav Rajpurkar, Anirudh Joshi, Anuj Pareek, Andrew Y. Ng, and Matthew P. Lungren. 2021. CheXternal: Generalization of Deep Learning Models for Chest X-ray Interpretation to Photos of Chest X-rays and External Clinical Settings. arXiv:2102.08660 [eess.IV]
[23]
Pranav Rajpurkar, Chloe O'Connell, Amit Schechter, Nishit Asnani, Jason Li, Amirhossein Kiani, Robyn L Ball, Marc Mendelson, Gary Maartens, Daniël J van Hoving, et al. 2020. CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV. NPJ digital medicine 3, 1 (2020), 1--8.
[24]
Youngmin Ro and Jin Young Choi. 2020. Layer-wise Pruning and Autotuning of Layer-wise Learning Rates in Fine-tuning of Deep Networks. arXiv:2002.06048 [cs.CV]
[25]
Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh, and Dhruv Batra. 2016. Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization. CoRR abs/1610.02391 (2016). arXiv:1610.02391 http://arxiv.org/abs/1610.02391
[26]
Hari Sowrirajan, Jingbo Yang, Andrew Y. Ng, and Pranav Rajpurkar. 2020. MoCo Pretraining Improves Representation and Transferability of Chest X-ray Models. arXiv:2010.05352 [cs.CV]
[27]
Suraj Srinivas and R. Venkatesh Babu. 2015. Data-free parameter pruning for Deep Neural Networks. CoRR abs/1507.06149 (2015). arXiv:1507.06149 http://arxiv.org/abs/1507.06149
[28]
Anuroop Sriram, Matthew Muckley, Koustuv Sinha, Farah Shamout, Joelle Pineau, Krzysztof J. Geras, Lea Azour, Yindalon Aphinyanaphongs, Nafissa Yakubova, and William Moore. 2021. COVID-19 Deterioration Prediction via Self-Supervised Representation Learning and Multi-Image Prediction. arXiv:2101.04909 [cs.CV]
[29]
Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M. Summers. 2017. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. CoRR abs/1705.02315 (2017). arXiv:1705.02315 http://arxiv.org/abs/1705.02315
[30]
Ross Wightman. 2020. timm 0.2.1. https://pypi.org/project/timm/.
[31]
Li Zhang, Mengya Yuan, Zhen An, Xiangmei Zhao, Hui Wu, Haibin Li, Ya Wang, Beibei Sun, Huijun Li, Shibin Ding, Xiang Zeng, Ling Chao, Pan Li, and Weidong Wu. 2020. Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: A cross-sectional study of chronic diseases in central China. PLOS ONE 15, 5 (05 2020), 1--11.

Cited By

View all
  • (2024)Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical imagesEuropean Radiology Experimental10.1186/s41747-023-00411-38:1Online publication date: 8-Feb-2024
  • (2024)Weakly supervised medulloblastoma tumor classification using domain specific patch-level feature extractionMedical Imaging 2024: Digital and Computational Pathology10.1117/12.3006455(49)Online publication date: 3-Apr-2024
  • (2024)Diabetic Retinal Disease Detection Through Transfer Learning Techniques2024 6th International Conference on Advancements in Computing (ICAC)10.1109/ICAC64487.2024.10851057(312-317)Online publication date: 12-Dec-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
CHIL '21: Proceedings of the Conference on Health, Inference, and Learning
April 2021
309 pages
ISBN:9781450383592
DOI:10.1145/3450439
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 April 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. ImageNet
  2. chest X-ray interpretation
  3. efficiency
  4. generalization
  5. pretraining
  6. truncation

Qualifiers

  • Research-article

Conference

ACM CHIL '21
Sponsor:

Acceptance Rates

CHIL '21 Paper Acceptance Rate 27 of 110 submissions, 25%;
Overall Acceptance Rate 27 of 110 submissions, 25%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)382
  • Downloads (Last 6 weeks)36
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical imagesEuropean Radiology Experimental10.1186/s41747-023-00411-38:1Online publication date: 8-Feb-2024
  • (2024)Weakly supervised medulloblastoma tumor classification using domain specific patch-level feature extractionMedical Imaging 2024: Digital and Computational Pathology10.1117/12.3006455(49)Online publication date: 3-Apr-2024
  • (2024)Diabetic Retinal Disease Detection Through Transfer Learning Techniques2024 6th International Conference on Advancements in Computing (ICAC)10.1109/ICAC64487.2024.10851057(312-317)Online publication date: 12-Dec-2024
  • (2024)A Data-Centric Approach to Investigate the Feasibility of Utilizing Animal Medical Data as a Solution for Human Medical Data ScarcityIEEE Access10.1109/ACCESS.2024.348785112(163326-163337)Online publication date: 2024
  • (2024)Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encodersScientific Reports10.1038/s41598-024-73695-z14:1Online publication date: 5-Oct-2024
  • (2024)Development of Deep Learning-Based Classification Models for Opacity Differentiation in Pediatric Chest RadiographyInformatics in Medicine Unlocked10.1016/j.imu.2024.101605(101605)Online publication date: Nov-2024
  • (2024)Improving chest X-ray report generation by leveraging warm startingArtificial Intelligence in Medicine10.1016/j.artmed.2023.102633144:COnline publication date: 5-Jan-2024
  • (2024)Inter-model interpretability: Self-supervised models as a case studyArray10.1016/j.array.2024.10035022(100350)Online publication date: Jul-2024
  • (2024)Development and validation of open-source deep neural networks for comprehensive chest x-ray reading: a retrospective, multicentre studyThe Lancet Digital Health10.1016/S2589-7500(23)00218-26:1(e44-e57)Online publication date: Jan-2024
  • (2024)Item-region-based style classification network (IRSN): a fashion style classifier based on domain knowledge of fashion expertsApplied Intelligence10.1007/s10489-024-05683-954:20(9579-9593)Online publication date: 18-Jul-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media