Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Efficient and Effective Similar Subtrajectory Search: A Spatial-aware Comprehension Approach

Published: 13 April 2022 Publication History

Abstract

Although many applications take subtrajectories as basic units for analysis, there is little research on the similar subtrajectory search problem aiming to return a portion of a trajectory (i.e., subtrajectory), which is the most similar to a query trajectory. We find that in some special cases, when a grid-based metric is used, this problem can be formulated as a reading comprehension problem, which has been studied extensively in the field of natural language processing (NLP). By this formulation, we can obtain faster models with better performance than existing methods. However, due to the difference between natural language and trajectory (e.g., spatial relationship), it is impossible to directly apply NLP models to this problem. Therefore, we propose a Similar Subtrajectory Search with a Graph Neural Networks framework. This framework contains four modules including a spatial-aware grid embedding module, a trajectory embedding module, a query-context trajectory fusion module, and a span prediction module. Specifically, in the spatial-aware grid embedding module, the spatial-based grid adjacency is constructed and delivered to the graph neural network to learn spatial-aware grid embedding. The trajectory embedding module aims to model the sequential information of trajectories. The purpose of the query-context trajectory fusion module is to fuse the information of the query trajectory to each grid of the context trajectories. Finally, the span prediction module aims to predict the start and the end of a subtrajectory for the context trajectory, which is the most similar to the query trajectory. We conduct comprehensive experiments on two real world datasets, where the proposed framework outperforms the state-of-the-art baselines consistently and significantly.

References

[1]
P. Agarwal, K. Fox, K. Munagala, A. Nath, J. Pan, and E. Taylor. 2018. Subtrajectory clustering: Models and algorithms. In SIGMOD/PODS (2018).
[2]
H. Alt and M. Godau. 1995. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5 (1995), 75–91.
[3]
P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri. 1999. Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15, 11 (1999), 937–46.
[4]
K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. 2011. Detecting commuting patterns by clustering subtrajectories. Int. J. Comput. Geom. Appl. 21 (2011), 253–282.
[5]
L. Chen and R. Ng. 2004. On the marriage of lp-norms and edit distance. In VLDB.
[6]
L. Chen, M. Özsu, and V. Oria. 2005. Robust and fast similarity search for moving object trajectories. In SIGMOD.
[7]
Y. Cui, L. Deng, Y. Zhao, B. Yao, V. W. Zheng, and K. Zheng. 2019. Hidden POI ranking with spatial crowdsourcing. In SIGKDD. 814–824.
[8]
J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL-HLT.
[9]
R. H. Güting and M. Schneider. 2005. Realm-based spatial data types: The ROSE algebra. Proc. VLDB 4 (2005), 243–286.
[10]
X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. 2020. LightGCN: Simplifying and powering graph convolution network for recommendation. In SIGIR (2020).
[11]
S. Kanda, K. Takeuchi, K. Fujii, and Y. Tabei. 2020. Succinct trit-array trie for scalable trajectory similarity search. In SIGSPATIAL (2020).
[12]
T. Kipf and M. Welling. 2017. Semi-supervised classification with graph convolutional networks. arXiv: 1609.02907. Retrieved from https://arxiv.org/abs/1609.02907.
[13]
S. Koide, C. Xiao, and Y. Ishikawa. 2020. Fast subtrajectory similarity search in road networks under weighted edit distance constraints. Proc. VLDB 13 (2020), 2188–2201.
[14]
J. Lee, J. Han, and K. Whang. 2007. Trajectory clustering: A partition-and-group framework. In SIGMOD’07.
[15]
L. Li, K. Zheng, S. Wang, W. Hua, and X. Zhou. 2018. Go slow to go fast: Minimal on-road time route scheduling with parking facilities using historical trajectory. VLDB J. 27 (2018), 321–345.
[16]
X. Li, K. Zhao, G. Cong, C. S. Jensen, and W. Wei. 2018. Deep representation learning for trajectory similarity computation. In ICDE. 617–628.
[17]
X. Li, Y. Zhao, J. Guo, and K. Zheng. 2020. Group task assignment with social impact-based preference in spatial crowdsourcing. In DASFAA. 677–693.
[18]
X. Li, Y. Zhao, K. Zheng, and X. Zhou. 2020. Consensus-based group task assignment with social impact in spatial crowdsourcing. Data Sci. Eng. 5, 4 (2020), 375–390.
[19]
G. Liu, Y. Liu, K. Zheng, An Liu, Z. Li, Y. Wang, and X. Zhou. 2018. MCS-GPM: Multi-constrained simulation based graph pattern matching in contextual social graphs. IEEE Trans. Knowl. Data Eng. 30 (2018), 1050–1064.
[20]
G. Liu, Y. Wang, and M. Orgun. 2013. Finding the optimal social trust path for the selection of trustworthy service providers in complex social networks. IEEE Trans. Serv. Comput. 6 (2013), 152–167.
[21]
Y. Liu, K. Zhao, G. Cong, and Z. Bao. 2020. Online anomalous trajectory detection with deep generative sequence modeling. In ICDE. 949–960.
[22]
A. Maheshwari, J. Sack, and C. Scheffer. 2015. Approximating the integral Fréchet distance. ArXiv abs/1512.03359.
[23]
W. Pei, D. Tax, and L. V. D. Maaten. 2016. Modeling time series similarity with siamese recurrent networks. ArXiv abs/1603.04713.
[24]
T. Rakthanmanon, Bilson J. L. Campana, A. Mueen, Gustavo E. A. P. A. Batista, M. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh. 2012. Searching and mining trillions of time series subsequences under dynamic time warping. In KDD, 262–270.
[25]
T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista, M. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh. 2013. Addressing big data time series: Mining trillions of time series subsequences under dynamic time warping. ACM Trans. Knowl. Disco. Data 7, 3 (2013).
[26]
S. Ranu, P. Deepak, A. Telang, P. Deshpande, and S. Raghavan. 2015. Indexing and matching trajectories under inconsistent sampling rates. In ICDE. 999–1010.
[27]
Y. Sakurai, C. Faloutsos, and M. Yamamuro. 2007. Stream monitoring under the time warping distance. In ICDE. 1046–1055.
[28]
M. Schuster and K. Paliwal. 1997. Bidirectional recurrent neural networks. IEEE Trans. Sign. Process. 45 (1997), 2673–2681.
[29]
M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. 2017. Bidirectional attention flow for machine comprehension. arXiv: 1611.01603. Retrieved from https://arxiv.org/abs/1611.01603.
[30]
H. Su, S. Liu, B. Zheng, X. Zhou, and K. Zheng. 2019. A survey of trajectory distance measures and performance evaluation. VLDB J. 29 (2019), 3–32.
[31]
H. Su, K. Zheng, J. Huang, H. Wang, and X. Zhou. 2014. Calibrating trajectory data for spatio-temporal similarity analysis. VLDB J. 24 (2014), 93–116.
[32]
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. 2017. Attention is all you need. In NIPS.
[33]
P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. 2018. Graph attention networks. arXiv: 1710.10903. Retrieved from https://arxviv.org/abs/1710.10903.
[34]
O. Vinyals, M. Fortunato, and N. Jaitly. 2015. Pointer networks. arXiv: 1506.03134. Retrieved from https://arxiv.org/abs/1506.03134.
[35]
M. Vlachos, D. Gunopulos, and G. Kollios. 2002. Discovering similar multidimensional trajectories. In ICDE. 673–684.
[36]
S. Wang and J. Jiang. 2016. Learning natural language inference with LSTM. arXiv: 1512.08849. Retrieved from https://arxiv.org/abs/1512.08849.
[37]
S. Wang and J. Jiang. 2017. Machine comprehension using match-LSTM and answer pointer. arXiv: 1608.07905. Retrieved from https://arxiv.org/abs/1608.07905.
[38]
Z. Wang, C. Long, G. Cong, and Y. Liu. 2020. Efficient and effective similar subtrajectory search with deep reinforcement learning. Proc. VLDB 13 (2020), 2312–2325.
[39]
F. Wu, T. Zhang, A. Souza, C. Fifty, T. Yu, and K. Q. Weinberger. 2019. Simplifying graph convolutional networks. arXiv: 1902.07153. Retrieved from https://arxiv.org/abs/1902.07153.
[40]
J. Xia, Y. Zhao, G. Liu, J. Xu, M. Zhang, and K. Zheng. 2019. Profit-driven task assignment in spatial crowdsourcing. In IJCAI. 1914–1920.
[41]
M. Xie. 2014. EDS: A segment-based distance measure for sub-trajectory similarity search. In SIGMOD (2014).
[42]
C. Xiong, V. Zhong, and R. Socher. 2017. Dynamic coattention networks for question answering. arXiv: 1611.01604. Retrieved from https://arxiv.org/abs/1611.01604.
[43]
Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Quoc V. Le. 2019. XLNet: Generalized autoregressive pretraining for language understanding. In NeurIPS.
[44]
D. Yao, G. Cong, C. Zhang, and J. Bi. 2019. Computing trajectory similarity in linear time: A generic seed-guided neural metric learning approach. In ICDE. 1358–1369.
[45]
B. Yi, H. V. Jagadish, and C. Faloutsos. 1998. Efficient retrieval of similar time sequences under time warping. In ICDE. 201–208.
[46]
A. W. Yu, D. Dohan, M. Luong, R. Zhao, K. Chen, M. Norouzi, and Quoc V. Le. 2018. QANet: Combining local convolution with global self-attention for reading comprehension. ArXiv abs/1804.09541.
[47]
Y. Zhao, Y. Li, Y. Wang, H. Su, and K. Zheng. 2017. Destination-aware task assignment in spatial crowdsourcing. In CIKM. 297–306.
[48]
Y. Zhao, S. Shang, Y. Wang, B. Zheng, Q. V. H. Nguyen, and K. Zheng. 2018. REST: A reference-based framework for spatio-temporal trajectory compression. In SIGKDD. 2797–2806.
[49]
Y. Zhao, J. Xia, G. Liu, H. Su, D. Lian, S. Shang, and K. Zheng. 2019. Preference-aware task assignment in spatial crowdsourcing. In AAAI. 2629–2636.
[50]
Y. Zhao, K. Zheng, Y. Cui, H. Su, F. Zhu, and X. Zhou. 2020. Predictive task assignment in spatial crowdsourcing: A data-driven approach. In ICDE. 13–24.
[51]
Y. Zhao, K. Zheng, J. Guo, B. Yang, T. B. Pedersen, and C. S. Jensen. 2021. Fairness-aware task assignment in spatial crowdsourcing: Game-theoretic approaches. In ICDE.
[52]
Y. Zhao, K. Zheng, Y. Li, H. Su, J. Liu, and X. Zhou. 2019. Destination-aware task assignment in spatial crowdsourcing: A worker decomposition approach. IEEE Trans. Knowl. Data Eng. 32, 12 (2019), 2336–2350.
[53]
K. Zheng, Y. Zhao, D. Lian, B. Zheng, G. Liu, and X. Zhou. 2020. Reference-based framework for spatio-temporal trajectory compression and query processing. IEEE Trans. Knowl. Data Eng. 32 (2020), 2227–2240.
[54]
K. Zheng, Y. Zheng, N. J. Yuan, S. Shang, and X. Zhou. 2014. Online discovery of gathering patterns over trajectories. IEEE Trans. Knowl. Data Eng. 26 (2014), 1974–1988.

Cited By

View all
  • (2024)Let's Speak Trajectories: A Vision to Use NLP Models for Trajectory Analysis TasksACM Transactions on Spatial Algorithms and Systems10.1145/365647010:2(1-25)Online publication date: 1-Jul-2024
  • (2024)Efficient Learning-based Top-k Representative Similar Subtrajectory Query2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00335(4396-4408)Online publication date: 13-May-2024
  • (2024)Distributional Kernel: An Effective and Efficient Means for Trajectory RetrievalAdvances in Knowledge Discovery and Data Mining10.1007/978-981-97-2262-4_22(271-283)Online publication date: 7-May-2024
  • Show More Cited By

Index Terms

  1. Efficient and Effective Similar Subtrajectory Search: A Spatial-aware Comprehension Approach

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Intelligent Systems and Technology
      ACM Transactions on Intelligent Systems and Technology  Volume 13, Issue 3
      June 2022
      415 pages
      ISSN:2157-6904
      EISSN:2157-6912
      DOI:10.1145/3508465
      • Editor:
      • Huan Liu
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 13 April 2022
      Accepted: 01 March 2021
      Revised: 01 February 2021
      Received: 01 January 2021
      Published in TIST Volume 13, Issue 3

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Similar subtrajectory search
      2. graph neural networks
      3. reading comprehension

      Qualifiers

      • Research-article
      • Refereed

      Funding Sources

      • NSFC

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)128
      • Downloads (Last 6 weeks)5
      Reflects downloads up to 19 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Let's Speak Trajectories: A Vision to Use NLP Models for Trajectory Analysis TasksACM Transactions on Spatial Algorithms and Systems10.1145/365647010:2(1-25)Online publication date: 1-Jul-2024
      • (2024)Efficient Learning-based Top-k Representative Similar Subtrajectory Query2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00335(4396-4408)Online publication date: 13-May-2024
      • (2024)Distributional Kernel: An Effective and Efficient Means for Trajectory RetrievalAdvances in Knowledge Discovery and Data Mining10.1007/978-981-97-2262-4_22(271-283)Online publication date: 7-May-2024
      • (2022)HeGAProceedings of the 31st ACM International Conference on Information & Knowledge Management10.1145/3511808.3557345(1319-1328)Online publication date: 17-Oct-2022

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      Full Text

      HTML Format

      View this article in HTML Format.

      HTML Format

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media