Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3462172.3462198acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiflConference Proceedingsconference-collections
research-article

Polymorphic System I

Published: 23 July 2021 Publication History

Abstract

System I is a simply-typed lambda calculus with pairs, extended with an equational theory obtained from considering the type isomorphisms as equalities. In this work we propose an extension of System I to polymorphic types, adding the corresponding isomorphisms. We provide non-standard proofs of subject reduction and strong normalisation, extending those of System I.

References

[1]
Pablo Arrighi and Alejandro Díaz-Caro. 2012. A System F Accounting for Scalars. LMCS 8, 1:11 (2012), 1–32.
[2]
Pablo Arrighi, Alejandro Díaz-Caro, and Benoît Valiron. 2017. The Vectorial Lambda-Calculus. Inf. and Comp. 254, 1 (2017), 105–139.
[3]
Pablo Arrighi and Gilles Dowek. 2017. Lineal: A linear-algebraic lambda-calculus. LMCS 13, 1:8 (2017), 1–33.
[4]
Gérard Boudol. 1994. Lambda-Calculi for (Strict) Parallel Functions. Inf. and Comp. 108, 1 (1994), 51–127.
[5]
Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. 2012. A Relational Semantics for Parallelism and Non-Determinism in a Functional Setting. APAL 163, 7 (2012), 918–934.
[6]
Thierry Coquand and Gérard Huet. 1988. The Calculus of Constructions. Inf. and Comp. 76, 2–3 (1988), 95–120.
[7]
Ugo de’Liguoro and Adolfo Piperno. 1995. Non Deterministic Extensions of Untyped λ-calculus. Inf. and Comp. 122, 2 (1995), 149–177.
[8]
Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno. 1998. A filter model for concurrent λ-calculus. SIAM JComp. 27, 5 (1998), 1376–1419.
[9]
Roberto Di Cosmo. 1995. Isomorphisms of types: from λ-calculus to information retrieval and language design. Birkhauser, Switzerland.
[10]
Alejandro Díaz-Caro and Gilles Dowek. 2013. Non determinism through type isomorphism. EPTCS (LSFA’12) 113(2013), 137–144.
[11]
Alejandro Díaz-Caro and Gilles Dowek. 2017. Typing quantum superpositions and measurement. LNCS (TPNC’17) 10687(2017), 281–293.
[12]
Alejandro Díaz-Caro and Gilles Dowek. 2019. Proof Normalisation in a Logic Identifying Isomorphic Propositions. LIPIcs (FSCD’19) 131(2019), 14:1–14:23.
[13]
Alejandro Díaz-Caro and Gilles Dowek. 2020. Extensional proofs in a propositional logic modulo isomorphisms. arXiv:2002.03762.
[14]
Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel, and Benoît Valiron. 2019. Realizability in the Unitary Sphere. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019). IEEE, Vancouver, BC, Canada, 1–13.
[15]
Alejandro Díaz-Caro and Pablo E. Martínez López. 2015. Isomorphisms considered as equalities: Projecting functions and enhancing partial application through an implementation of λ+. ACM IFL 2015, 9 (2015), 1–11.
[16]
Gilles Dowek, Thérèse Hardin, and Claude Kirchner. 2003. Theorem proving modulo. JAR 31, 1 (2003), 33–72.
[17]
Gilles Dowek and Benjamin Werner. 2003. Proof normalization modulo. JSL 68, 4 (2003), 1289–1316.
[18]
Jacques Garrigue and Hassan Aït-Kaci. 1994. The Typed Polymorphic Label-Selective λ-Calculus. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages(POPL ’94). Association for Computing Machinery, New York, NY, USA, 35–47.
[19]
Herman Geuvers, Robbert Krebbers, James McKinna, and Freek Wiedijk. 2010. Pure Type Systems without Explicit Contexts. In Proceedings of LFMTP 2010(EPTCS, Vol. 34), Karl Crary and Marino Miculan (Eds.). 53–67.
[20]
Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and types. Cambridge U.P., UK.
[21]
Per Martin-Löf. 1984. Intuitionistic type theory. Bibliopolis, Napoli, Italy.
[22]
Michele Pagani and Simona Ronchi Della Rocca. 2010. Linearity, non-determinism and solvability. Fund. Inf. 103, 1–4 (2010), 173–202.
[23]
Jonghyun Park, Jeongbong Seo, Sungwoo Park, and Gyesik Lee. 2014. Mechanizing Metatheory without Typing Contexts. Journal of Automated Reasoning 52, 2 (2014), 215–239.
[24]
Mikael Rittri. 1990. Retrieving library identifiers via equational matching of types. In Proceedings of CADE 1990(LNCS, Vol. 449). 603–617.
[25]
Cristian F. Sottile, Alejandro Díaz-Caro, and Pablo E. Martínez López. 2021. Polymorphic System I. arXiv:2101.03215.
[26]
The Univalent Foundations Program. 2013. HoTT: Univalent Foundations of Mathematics. Institute for Advanced Study, Princeton, NJ, USA.
[27]
Lionel Vaux. 2009. The algebraic lambda calculus. MSCS 19, 5 (2009), 1029–1059.

Cited By

View all
  • (2022)A Quick Overview on the Quantum Control Approach to the Lambda CalculusElectronic Proceedings in Theoretical Computer Science10.4204/EPTCS.357.1357(1-17)Online publication date: 8-Apr-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
IFL '20: Proceedings of the 32nd Symposium on Implementation and Application of Functional Languages
September 2020
161 pages
ISBN:9781450389631
DOI:10.1145/3462172
Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 July 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Lambda calculus
  2. Polymorphic type system
  3. Type isomorphisms

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

IFL 2020

Acceptance Rates

Overall Acceptance Rate 19 of 36 submissions, 53%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)A Quick Overview on the Quantum Control Approach to the Lambda CalculusElectronic Proceedings in Theoretical Computer Science10.4204/EPTCS.357.1357(1-17)Online publication date: 8-Apr-2022

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media