Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Abstractions and Automated Algorithms for Mixed Domain Finite Element Methods

Published: 28 September 2021 Publication History
  • Get Citation Alerts
  • Abstract

    Mixed dimensional partial differential equations (PDEs) are equations coupling unknown fields defined over domains of differing topological dimension. Such equations naturally arise in a wide range of scientific fields including geology, physiology, biology, and fracture mechanics. Mixed dimensional PDEs are also commonly encountered when imposing non-standard conditions over a subspace of lower dimension, e.g., through a Lagrange multiplier. In this article, we present general abstractions and algorithms for finite element discretizations of mixed domain and mixed dimensional PDEs of codimension up to one (i.e., nD-mD with |n-m| ≤ 1). We introduce high-level mathematical software abstractions together with lower-level algorithms for expressing and efficiently solving such coupled systems. The concepts introduced here have also been implemented in the context of the FEniCS finite element software. We illustrate the new features through a range of examples, including a constrained Poisson problem, a set of Stokes-type flow models, and a model for ionic electrodiffusion.

    References

    [1]
    Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg, Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells. 2015. The FEniCS project version 1.5. Archive of Numerical Software 3, 100 (2015), 9–23.
    [2]
    Martin S. Alnæs, Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N. Wells. 2014. Unified form language: A domain-specific language for weak formulations of partial differential equations. ACM Transactions on Mathmatical Software 40, 2, (Mar. 2014), 1–37.
    [3]
    Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and Donatella Marini. 2000. Discontinuous galerkin methods for elliptic problems. In Discontinuous Galerkin Methods. Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu (Eds.), Springer, Berlin, 89–101.
    [4]
    Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick Sanan, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. 2018. PETSc Web page. Retrieved from http://www.mcs.anl.gov/petsc. http://www.mcs.anl.gov/petsc.
    [5]
    F. Ballarin. 2016. Multiphenics - Easy Prototyping of Multiphysics Problems in FEniCS. Retrieved October 10, 2016 from https://mathlab.sissa.it/multiphenics.
    [6]
    W. Bangerth, R. Hartmann, and G. Kanschat. 2007. Deal.II —A general purpose object oriented finite element library. ACM Transactions on Mathmatical Software 33, 4 (2007), 1–27.
    [7]
    S. Bertoluzza, V. Chabannes, C. Prud’Homme, and M. Szopos. 2017. Boundary conditions involving pressure for the Stokes problem and applications in computational hemodynamics. Computer Methods in Applied Mechanics and Engineering 322 (2017), 58–80.
    [8]
    Wietse Marijn Boon. 2018. Conforming Discretizations of Mixed-Dimensional Partial Differential Equations. Doctoral thesis. University of Bergen, Bergen, Norway. Retrieved from http://bora.uib.no/handle/1956/18159.
    [9]
    Wietse M. Boon, Jan M. Nordbotten, and Jon E. Vatne. 2021. Functional Analysis and Exterior Calculus on Mixed-Dimensional Geometries. Annali di Matematica Pura ed Applicata (1923-) 200, 2 (2021), 757–789.
    [10]
    S. Brenner and R. Scott. 2007. The Mathematical Theory of Finite Element Methods. Springer. Retrieved from 2007939977https://books.google.no/books?id=ci4c_R0WKYYC.
    [11]
    Franco Brezzi, Jim Douglas, and L. Donatella Marini. 1985. Two families of mixed finite elements for second order elliptic problems. Numerische Mathemtik. 47, 2 (1985), 217–235.
    [12]
    Erik Burman, Susanne Claus, Peter Hansbo, Mats G. Larson, and André Massing. 2015. CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical. Methods in Engineering 104, 7 (2015), 472–501.
    [13]
    Sunčica Čanić, Marija Galić, Matko Ljulj, Boris Muha, Josip Tambača, and Yifan Wang. 2019. Analysis of a linear 3D fluid–mesh–shell interaction problem. Zeitschrift Für Angewandte Mathematik und Physik 70, 2 (Feb. 2019), 44.
    [14]
    P. G. Ciarlet. 1976. Numerical Analysis of the Finite Element Method. Les Presses de l.Université de Montréal, Series “Séminaire de Mathématiques Supérieures” 59 (1976).
    [15]
    P. G. Ciarlet. 2002. The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics. Retrieved from 77024477https://books.google.no/books?id=isEEyUXW9qkC.
    [16]
    Cécile Daversin-Catty, Chris N. Richardson, Ada J. Ellingsrud, and Marie E. Rognes. 2019. Mixed-dimensional-examples v2019.1. Retrieved from https://zenodo.org/record/3525001.
    [17]
    A. J. Ellingsrud, A. Solbrå, G. T. Einevoll, G. Halnes, and M. E. Rognes. 2020. Finite element simulation of ionic electrodiffusion in cellular geometries. Frontiers in Neuroinformatics 14 (2020), 11.
    [18]
    A. Ern and J. L. Guermond. 2004. Theory and Practice of Finite Elements. Springer. Retrieved from 03066022https://books.google.no/books?id=CCjm79FbJbcC.
    [19]
    Patrick E. Farrell, David A. Ham, Simon W. Funke, and Marie E. Rognes. 2013. Automated derivation of the adjoint of high-level transient finite element programs. SIAM Journal on Scientific Computing 35, 4 (2013), C369–C393.
    [20]
    F. Hecht. 2012. New development in FreeFem++. Journal of Numerical Mathematics 20, 3-4 (2012), 251–265.
    [21]
    Luca Heltai and Francesco Costanzo. 2012. Variational implementation of immersed finite element methods. Computer Methods in Applied Mechanics and Engineering 229-232 (2012), 110–127.
    [22]
    Miklós Homolya, Lawrence Mitchell, Fabio Luporini, and David A. Ham. 2018. TSFC: A structure-preserving form compiler. SIAM Journal on Scientific Computing 40, 3 (2018), C401–C428.
    [23]
    August Johansson, Benjamin Kehlet, Mats G. Larson, and Anders Logg. 2019. Multimesh finite element methods: Solving PDEs on multiple intersecting meshes. Computer Methods in Applied Mechanics and Engineering 343 (2019), 672–689.
    [24]
    George Karypis. 2011. METIS and ParMETIS. In Encyclopedia of Parallel Computing. Springer, 1117–1124.
    [25]
    Eirik Keilegavlen, Runar Berge, Alessio Fumagalli, Michele Starnoni, Ivar Stefansson, Jhabriel Varela, and Inga Berre. 2021. Porepy: An open-source software for simulation of multiphysics processes in fractured porous media. Computational Geosciences 25, 1 (2021), 243–265.
    [26]
    Timo Koch, Katharina Heck, Natalie Schröder, Holger Class, and Rainer Helmig. 2018. A new simulation framework for soil-root interaction, evaporation, root growth, and solute transport. Vadose Zone Journal 17, 1 (2018).
    [27]
    Miroslav Kuchta. 2019. Assembly of multiscale linear PDE operators. In Numerical Mathematics and AdvancedApplications ENUMATH. F. J. Vermolen and C. Vuik (Eds.), Springer, Cham, 641–650.
    [28]
    Miroslav Kuchta, Magne Nordaas, Joris C. G. Verschaeve, Mikael Mortensen, and Kent-Andre Mardal. 2016. Preconditioners for saddle point systems with trace constraints coupling 2D and 1D domains. SIAM Journal on Scientific Computing 38, 6 (2016), B962–B987.
    [29]
    Martin Werner Licht. 2017. Complexes of discrete distributional differential forms and their homology theory. Foundations of Computational Mathematics 17, 4 (Aug. 2017), 1085–1122.
    [30]
    A. Logg. 2009. Efficient representation of computational meshes. International Journal of Computational Science and Engineering 4, 4 (Nov. 2009), 283–295.
    [31]
    Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. 2012. Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin.
    [32]
    Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N. Wells. 2012. FFC: The FEniCS Form Compiler. Springer, Berlin. 227–238.
    [33]
    Anders Logg and Garth N. Wells. 2010. DOLFIN: Automated finite element computing. ACM Transactions on Mathematical Software 37, 2, (Apr. 2010), 1–28.
    [34]
    Anders Logg, Garth N. Wells, and Johan Hake. 2012. DOLFIN: a C++/Python Finite Element Library. Springer, Berlin,173–225.
    [35]
    J. -C. Nédélec. 1980. Mixed finite elements in. Numerische Mathematik 35, 3 (1980), 315–341.
    [36]
    J. -C. Nédélec. 1986. A new family of mixed finite elements in. Numerische Mathematik 50, 1 (1986), 57–81.
    [37]
    Kristian B. Ølgaard, Anders Logg, and Garth N. Wells. 2008. Automated code generation for discontinuous galerkin methods. SIAM Journal on Scientific Computing 31, 2 (Nov. 2008), 849–864.
    [38]
    François Pellegrini and Jean Roman. 1996. Scotch: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs. In High-Performance Computing and Networking. H. Liddell, A. Colbrook, B. Hertzberger, and P. Sloot (Eds.), Springer, Berlin, 493–498.
    [39]
    Christophe Prud’Homme, Vincent Chabannes, Vincent Doyeux, Mourad Ismail, Abdoulaye Samake, and Gonçalo Pena. 2012. Feel++: A computational framework for galerkin methods and advanced numerical methods. ESAIM: Proceedings 38 (Dec. 2012), 429–455.
    [40]
    Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T. Mcrae, Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly. 2016. Firedrake: Automating the finite element method by composing abstractions. ACM Transactions on Mathematical Software 43, 3, Article 24 (Dec. 2016), 27 pages.
    [41]
    P. -A. Raviart and J. M. Thomas. 1977. A mixed finite element method for 2nd order elliptic problems. In Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975). Lecture Notes in Math., Vol. 606, Springer, Berlin, 292–315.
    [42]
    M. E. Rognes, D. A. Ham, C. J. Cotter, and A. T. T. McRae. 2013. Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2. Geoscientific Model Development 6, 6 (2013), 2099–2119.
    [43]
    Abdoulaye Samake. 2014. Large Scale Nonconforming Domain Decomposition Methods. Theses. Université Grenoble Alpes, Saint-Martin-d’Hères, France. Retrieved from https://tel.archives-ouvertes.fr/tel-01092968.
    [44]
    J. Schöberl. 2019. NGSolve Finite Element Library. Retrieved from https://sourceforge.net/projects/ngsolve/.
    [45]
    Nicolas Schwenck, Bernd Flemisch, Rainer Helmig, and Barbara I. Wohlmuth. 2015. Dimensionally reduced flow models in fractured porous media: Crossings and boundaries. Computational Geosciences 19, 6 (Dec. 2015), 1219–1230.
    [46]
    George G. Somjen. 2001. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiological Reviews 81, 3 (2001), 1065–1096. 11427692.
    [47]
    Marcela Szopos. 2017. Mathematical Modeling, Analysis and Simulations for Fluid Mechanics and Their Relevance to in Silico Medicine. Habilitation à diriger des recherches. Université de Strasbourg, IRMA UMR 7501. Retrieved from https://tel.archives-ouvertes.fr/tel-01646867.
    [48]
    Aslak Tveito, Karoline H. Jæger, Miroslav Kuchta, Kent-Andre Mardal, and Marie E. Rognes. 2017. A cell-based framework for numerical modeling of electrical conduction in cardiac tissue. Frontiers in Physics 5 (2017), 48.
    [49]
    Jun Zhou, Wan Kan Chan, and Justin Schwartz. 2019. Modeling of Quench Behavior of YBa Cu O pancake magnets and distributed temperature sensing-based quench detection for operating temperature 30 K - 77 K. IEEE Transactions on Applied Superconductivity 29, 1 (2019), 1–11.

    Cited By

    View all
    • (2024)Boundary integral formulation of the cell-by-cell model of cardiac electrophysiologyEngineering Analysis with Boundary Elements10.1016/j.enganabound.2023.10.021158(239-251)Online publication date: Jan-2024
    • (2024)Predicting residual stresses in SLM additive manufacturing using a phase-field thermomechanical modeling frameworkComputational Materials Science10.1016/j.commatsci.2023.112576231(112576)Online publication date: Jan-2024
    • (2023)Introduction and verification of FEDM, an open-source FEniCS-based discharge modelling codePlasma Sources Science and Technology10.1088/1361-6595/acc54b32:4(044003)Online publication date: 19-Apr-2023
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Mathematical Software
    ACM Transactions on Mathematical Software  Volume 47, Issue 4
    December 2021
    242 pages
    ISSN:0098-3500
    EISSN:1557-7295
    DOI:10.1145/3485138
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 September 2021
    Accepted: 01 June 2021
    Revised: 01 February 2021
    Received: 01 November 2019
    Published in TOMS Volume 47, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. FEniCS project
    2. mixed dimensional
    3. mixed domains
    4. mixed finite elements

    Qualifiers

    • Research-article
    • Refereed

    Funding Sources

    • European Research Council (ERC)
    • European Union’s Horizon 2020 research and innovation programme

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)390
    • Downloads (Last 6 weeks)64
    Reflects downloads up to 26 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Boundary integral formulation of the cell-by-cell model of cardiac electrophysiologyEngineering Analysis with Boundary Elements10.1016/j.enganabound.2023.10.021158(239-251)Online publication date: Jan-2024
    • (2024)Predicting residual stresses in SLM additive manufacturing using a phase-field thermomechanical modeling frameworkComputational Materials Science10.1016/j.commatsci.2023.112576231(112576)Online publication date: Jan-2024
    • (2023)Introduction and verification of FEDM, an open-source FEniCS-based discharge modelling codePlasma Sources Science and Technology10.1088/1361-6595/acc54b32:4(044003)Online publication date: 19-Apr-2023
    • (2023)A review of advances in modeling hydrodynamics and hydroelasticity for very large floating structuresOcean Engineering10.1016/j.oceaneng.2023.115319285(115319)Online publication date: Oct-2023
    • (2022)Geometrically Reduced Modelling of Pulsatile Flow in Perivascular NetworksFrontiers in Physics10.3389/fphy.2022.88226010Online publication date: 11-May-2022
    • (2022)A monolithic finite element formulation for the hydroelastic analysis of very large floating structuresInternational Journal for Numerical Methods in Engineering10.1002/nme.7140124:3(714-751)Online publication date: 10-Nov-2022

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media