Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3477495.3531738acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article

ir_metadata: An Extensible Metadata Schema for IR Experiments

Published: 07 July 2022 Publication History

Abstract

The information retrieval (IR) community has a strong tradition of making the computational artifacts and resources available for future reuse, allowing the validation of experimental results. Besides the actual test collections, the underlying run files are often hosted in data archives as part of conferences like TREC, CLEF, or NTCIR. Unfortunately, the run data itself does not provide much information about the underlying experiment. For instance, the single run file is not of much use without the context of the shared task's website or the run data archive. In other domains, like the social sciences, it is good practice to annotate research data with metadata. In this work, we introduce \textttir\_metadata - an extensible metadata schema for TREC run files based on the PRIMAD model. We propose to align the metadata annotations to PRIMAD, which considers components of computational experiments that can affect reproducibility. Furthermore, we outline important components and information that should be reported in the metadata and give evidence from the literature. To demonstrate the usefulness of these metadata annotations, we implement new features in \textttrepro\_eval that support the outlined metadata schema for the use case of reproducibility studies. Additionally, we curate a dataset with run files derived from experiments with different instantiations of PRIMAD components and annotate these with the corresponding metadata. In the experiments, we cover reproducibility experiments that are identified by the metadata and classified by PRIMAD. With this work, we enable IR researchers to annotate TREC run files and improve the reuse value of experimental artifacts even further.

Supplementary Material

MP4 File (SIGIR22-rs1684.mp4)
Experimentation in information retrieval (IR) research is an inherently data-driven process that often results in experimental artifacts - so-called run files. We propose making the run files even more valuable by annotating them with metadata to promote the comparability, transparency, and reproducibility of IR experiments. This video introduces the outlined metadata schema and an overview of the related resources. From a practical point of view, we propose to add the metadata, similar to a file header, as comments at the beginning of the run file. Furthermore, we align the metadata schema to the PRIMAD model, providing a conceptual taxonomy for reproducible IR experiments. Besides the metadata schema, we introduce the software support of repro_eval (also with the help of a Colab notebook) and provide annotated runs as a curated dataset hosted in a Zenodo archive. Finally, we show how the metadata facilitates meta-evaluations by the use-case of reproducibility studies.

References

[1]
M. Agosti, G. M. Di Nunzio, and N. Ferro. 2006. Scientific Data of an Evaluation Campaign: Do We Properly Deal with Them?. In Evaluation of Multilingual and Multi-modal Information Retrieval, 7th Workshop of the Cross-Language Evaluation Forum, CLEF 2006, Alicante, Spain, September 20--22, 2006, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 4730), C. Peters, P. D. Clough, F. C. Gey, J. Karlgren, B. Magnini, D. W. Oard, M. de Rijke, and M. Stempfhuber (Eds.). Springer, 11--20. https://doi.org/10.1007/978--3--540--74999--8_2
[2]
J. Allan, D. Harman, E. Kanoulas, D. Li, C. Van Gysel, and E. M. Voorhees. 2017. TREC 2017 Common Core Track Overview. In Proceedings of The Twenty-Sixth Text REtrieval Conference, TREC 2017, Gaithersburg, Maryland, USA, November 15--17, 2017 (NIST Special Publication, Vol. 500--324), E. M. Voorhees and A. Ellis (Eds.). National Institute of Standards and Technology (NIST) . https://trec.nist.gov/pubs/trec26/papers/Overview-CC.pdf
[3]
T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. 2009a. EvaluatIR: an online tool for evaluating and comparing IR systems. In Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, Boston, MA, USA, July 19--23, 2009, J. Allan, J. A. Aslam, M. Sanderson, C. Zhai, and J. Zobel (Eds.). ACM, 833. https://doi.org/10.1145/1571941.1572153
[4]
T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. 2009b. Improvements that don't add up: ad-hoc retrieval results since 1998. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, Hong Kong, China, November 2--6, 2009, D. W. Cheung, I. Song, W. W. Chu, X. Hu, and J. Lin (Eds.). ACM, 601--610. https://doi.org/10.1145/1645953.1646031
[5]
M. Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature News, Vol. 533, 7604 (2016), 452.
[6]
H. Bar and H. Wang. 2020. Reproducible Science with LaTeX. CoRR, Vol. abs/2010.01482 (2020). showeprint[arXiv]2010.01482 https://arxiv.org/abs/2010.01482
[7]
C. Boettiger. 2015. An introduction to Docker for reproducible research. ACM SIGOPS Oper. Syst. Rev., Vol. 49, 1 (2015), 71--79. https://doi.org/10.1145/2723872.2723882
[8]
T. Breuer, N. Ferro, N. Fuhr, M. Maistro, T. Sakai, P. Schaer, and I. Soboroff. 2020. How to Measure the Reproducibility of System-oriented IR Experiments. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25--30, 2020, J. Huang, Y. Chang, X. Cheng, J. Kamps, V. Murdock, J. Wen, and Y. Liu (Eds.). ACM, 349--358. https://doi.org/10.1145/3397271.3401036
[9]
T. Breuer, N. Ferro, M. Maistro, and P. Schaer. 2021 a. repro_eval: A Python Interface to Reproducibility Measures of System-Oriented IR Experiments. In Advances in Information Retrieval - 43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28 - April 1, 2021, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12657), D. Hiemstra, M. Moens, J. Mothe, R. Perego, M. Potthast, and F. Sebastiani (Eds.). Springer, 481--486. https://doi.org/10.1007/978--3-030--72240--1_51
[10]
T. Breuer, M. Pest, and P. Schaer. 2021 b. Evaluating Elements of Web-Based Data Enrichment for Pseudo-relevance Feedback Retrieval. In Experimental IR Meets Multilinguality, Multimodality, and Interaction - 12th International Conference of the CLEF Association, CLEF 2021, Virtual Event, September 21--24, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12880), K. Selcc uk Candan, B. Ionescu, L. Goeuriot, B. Larsen, H. Mü ller, A. Joly, M. Maistro, F. Piroi, G. Faggioli, and N. Ferro (Eds.). Springer, 53--64. https://doi.org/10.1007/978--3-030--85251--1_5
[11]
T. Breuer and P. Schaer. 2019. Replicability and Reproducibility of Automatic Routing Runs. In Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum, Lugano, Switzerland, September 9--12, 2019 (CEUR Workshop Proceedings, Vol. 2380), L. Cappellato, N. Ferro, D. E. Losada, and H. Mü ller (Eds.). CEUR-WS.org. http://ceur-ws.org/Vol-2380/paper_84.pdf
[12]
B. Carterette. 2015. The Best Published Result is Random: Sequential Testing and its Effect on Reported Effectiveness. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, August 9--13, 2015, R. Baeza-Yates, M. Lalmas, A. Moffat, and B. A. Ribeiro-Neto (Eds.). ACM, 747--750. https://doi.org/10.1145/2766462.2767812
[13]
F. S. Chirigati, D. E. Shasha, and J. Freire. 2013. ReproZip: Using Provenance to Support Computational Reproducibility. In 5th Workshop on the Theory and Practice of Provenance, TaPP'13, Lombard, IL, USA, April 2--3, 2013, A. Meliou and V. Tannen (Eds.). USENIX Association. https://www.usenix.org/conference/tapp13/technical-sessions/presentation/chirigati
[14]
C. Collberg, T. Proebsting, and A. M. Warren. 2015. Repeatability and benefaction in computer systems research. University of Arizona TR, Vol. 14, 4 (2015).
[15]
M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanic, H. Mé nager, S. Soiland-Reyes, and C. A. Goble. 2021. Methods Included: Standardizing Computational Reuse and Portability with the Common Workflow Language. CoRR, Vol. abs/2105.07028 (2021). showeprint[arXiv]2105.07028 https://arxiv.org/abs/2105.07028
[16]
G. M. Di Nunzio and N. Ferro. 2005. DIRECT: A System for Evaluating Information Access Components of Digital Libraries. In Research and Advanced Technology for Digital Libraries, 9th European Conference, ECDL 2005, Vienna, Austria, September 18--23, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3652), A. Rauber, S. Christodoulakis, and A. M. Tjoa (Eds.). Springer, 483--484. https://doi.org/10.1007/11551362_46
[17]
J. Dittrich and P. Bender. 2015. Janiform Intra-Document Analytics for Reproducible Research. Proc. VLDB Endow., Vol. 8, 12 (2015), 1972--1975. https://doi.org/10.14778/2824032.2824114
[18]
M. F"a rber. 2020. Analyzing the GitHub Repositories of Research Papers. In JCDL '20: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, Virtual Event, China, August 1--5, 2020, R. Huang, D. Wu, G. Marchionini, D. He, S. J. Cunningham, and P. Hansen (Eds.). ACM, 491--492. https://doi.org/10.1145/3383583.3398578
[19]
M. Ferrante, N. Ferro, and N. Fuhr. 2021. Towards Meaningful Statements in IR Evaluation: Mapping Evaluation Measures to Interval Scales. IEEE Access, Vol. 9 (2021), 136182--136216. https://doi.org/10.1109/ACCESS.2021.3116857
[20]
N. Ferro. 2017. Reproducibility Challenges in Information Retrieval Evaluation. ACM J. Data Inf. Qual., Vol. 8, 2 (2017), 8:1--8:4. https://doi.org/10.1145/3020206
[21]
N. Ferro, N. Fuhr, K. J"a rvelin, N. Kando, M. Lippold, and J. Zobel. 2016. Increasing Reproducibility in IR: Findings from the Dagstuhl Seminar on "Reproducibility of Data-Oriented Experiments in e-Science". SIGIR Forum, Vol. 50, 1 (2016), 68--82. https://doi.org/10.1145/2964797.2964808
[22]
N. Ferro, N. Fuhr, M. Maistro, T. Sakai, and I. Soboroff. 2019. Overview of CENTRE@CLEF 2019: Sequel in the Systematic Reproducibility Realm. In Experimental IR Meets Multilinguality, Multimodality, and Interaction - 10th International Conference of the CLEF Association, CLEF 2019, Lugano, Switzerland, September 9--12, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11696), F. Crestani, M. Braschler, J. Savoy, A. Rauber, H. Mü ller, D. E. Losada, G. Heinatz Bü rki, L. Cappellato, and N. Ferro (Eds.). Springer, 287--300. https://doi.org/10.1007/978--3-030--28577--7_24
[23]
N. Ferro and D. Kelly. 2018. SIGIR Initiative to Implement ACM Artifact Review and Badging. SIGIR Forum, Vol. 52, 1 (2018), 4--10. https://doi.org/10.1145/3274784.3274786
[24]
N. Ferro, M. Maistro, T. Sakai, and I. Soboroff. 2018. Overview of CENTRE@CLEF 2018: A First Tale in the Systematic Reproducibility Realm. In Experimental IR Meets Multilinguality, Multimodality, and Interaction - 9th International Conference of the CLEF Association, CLEF 2018, Avignon, France, September 10--14, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11018), P. Bellot, C. Trabelsi, J. Mothe, F. Murtagh, J. Nie, L. Soulier, E. SanJuan, L. Cappellato, and N. Ferro (Eds.). Springer, 239--246. https://doi.org/10.1007/978--3--319--98932--7_23
[25]
N. Ferro and G. Silvello. 2016. A General Linear Mixed Models Approach to Study System Component Effects. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, SIGIR 2016, Pisa, Italy, July 17--21, 2016, R. Perego, F. Sebastiani, J. A. Aslam, I. Ruthven, and J. Zobel (Eds.). ACM, 25--34. https://doi.org/10.1145/2911451.2911530
[26]
J. Freire, N. Fuhr, and A. Rauber. 2016. Reproducibility of Data-Oriented Experiments in e-Science (Dagstuhl Seminar 16041). Dagstuhl Reports, Vol. 6, 1 (2016), 108--159. https://doi.org/10.4230/DagRep.6.1.108
[27]
N. Fuhr. 2017. Some Common Mistakes In IR Evaluation, And How They Can Be Avoided. SIGIR Forum, Vol. 51, 3 (2017), 32--41. https://doi.org/10.1145/3190580.3190586
[28]
N. Fuhr. 2019. Reproducibility and Validity in CLEF . In Information Retrieval Evaluation in a Changing World - Lessons Learned from 20 Years of CLEF, N. Ferro and C. Peters (Eds.). The Information Retrieval Series, Vol. 41. Springer, 555--564. https://doi.org/10.1007/978--3-030--22948--1_23
[29]
N. Fuhr. 2020. Proof by experimentation?: towards better IR research. SIGIR Forum, Vol. 54, 2 (2020), 2:1--2:4. https://doi.org/10.1145/3483382.3483385
[30]
M. G"a de, M. Koolen, M. M. Hall, T. Bogers, and V. Petras. 2021. A Manifesto on Resource Re-Use in Interactive Information Retrieval. In CHIIR '21: ACM SIGIR Conference on Human Information Interaction and Retrieval, Canberra, ACT, Australia, March 14--19, 2021, F. Scholer, P. Thomas, D. Elsweiler, H. Joho, N. Kando, and C. Smith (Eds.). ACM, 141--149. https://doi.org/10.1145/3406522.3446056
[31]
T. Gebru, J. Morgenstern, B. Vecchione, J. Wortman Vaughan, H. M. Wallach, H. D. III, and K. Crawford. 2021. Datasheets for datasets. Commun. ACM, Vol. 64, 12 (2021), 86--92. https://doi.org/10.1145/3458723
[32]
R. N. J. Graham, R. W. Perriss, and A. F. Scarsbrook. 2005. DICOM demystified: a review of digital file formats and their use in radiological practice. Clinical radiology, Vol. 60, 11 (2005), 1133--1140.
[33]
M. R. Grossman and G. V. Cormack. 2017. MRG_UWaterloo and WaterlooCormack Participation in the TREC 2017 Common Core Track. In Proceedings of The Twenty-Sixth Text REtrieval Conference, TREC 2017, Gaithersburg, Maryland, USA, November 15--17, 2017 (NIST Special Publication, Vol. 500--324), E. M. Voorhees and A. Ellis (Eds.). National Institute of Standards and Technology (NIST) . https://trec.nist.gov/pubs/trec26/papers/MRG_UWaterloo-CC.pdf
[34]
M. R. Grossman and G. V. Cormack. 2018. MRG_UWaterloo Participation in the TREC 2018 Common Core Track. In Proceedings of the Twenty-Seventh Text REtrieval Conference, TREC 2018, Gaithersburg, Maryland, USA, November 14--16, 2018 (NIST Special Publication, Vol. 500--331), E. M. Voorhees and A. Ellis (Eds.). National Institute of Standards and Technology (NIST) . https://trec.nist.gov/pubs/trec27/papers/MRG_UWaterloo-CC.pdf
[35]
A. Hanbury, G. Kazai, A. Rauber, and N. Fuhr (Eds.). 2015. Advances in Information Retrieval - 37th European Conference on IR Research, ECIR 2015, Vienna, Austria, March 29 - April 2, 2015. Proceedings. Lecture Notes in Computer Science, Vol. 9022. https://doi.org/10.1007/978--3--319--16354--3
[36]
F. Hopfgartner, A. Hanbury, H. Mü ller, I. Eggel, K. Balog, T. Brodt, G. V. Cormack, J. Lin, J. Kalpathy-Cramer, N. Kando, M. P. Kato, A. Krithara, T. Gollub, M. Potthast, E. Viegas, and S. Mercer. 2018. Evaluation-as-a-Service for the Computational Sciences: Overview and Outlook. ACM J. Data Inf. Qual., Vol. 10, 4 (2018), 15:1--15:32. https://doi.org/10.1145/3239570
[37]
P. Ivie and D. Thain. 2018. Reproducibility in Scientific Computing. ACM Comput. Surv., Vol. 51, 3 (2018), 63:1--63:36. https://doi.org/10.1145/3186266
[38]
I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. F. Lofstead, K. Mohror, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. 2017. The Popper Convention: Making Reproducible Systems Evaluation Practical. In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPS Workshops 2017, Orlando / Buena Vista, FL, USA, May 29 - June 2, 2017 . IEEE Computer Society, 1561--1570. https://doi.org/10.1109/IPDPSW.2017.157
[39]
T. Jones, A. Turpin, S. Mizzaro, F. Scholer, and M. Sanderson. 2014. Size and Source Matter: Understanding Inconsistencies in Test Collection-Based Evaluation. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China, November 3--7, 2014, J. Li, X. S. Wang, M. N. Garofalakis, I. Soboroff, T. Suel, and M. Wang (Eds.). ACM, 1843--1846. https://doi.org/10.1145/2661829.2661945
[40]
C. Kamphuis, A. P. de Vries, L. Boytsov, and J. Lin. 2020. Which BM25 Do You Mean? A Large-Scale Reproducibility Study of Scoring Variants. In Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14--17, 2020, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12036), J. M. Jose, E. Yilmaz, J. Magalh a es, P. Castells, N. Ferro, M. J. Silva, and F. Martins (Eds.). Springer, 28--34. https://doi.org/10.1007/978--3-030--45442--5_4
[41]
R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker, and Y. Xu. 2012. Trustworthy online controlled experiments: five puzzling outcomes explained. In The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '12, Beijing, China, August 12--16, 2012, Q. Yang, D. Agarwal, and J. Pei (Eds.). ACM, 786--794. https://doi.org/10.1145/2339530.2339653
[42]
H. Kriegel, E. Schubert, and A. Zimek. 2017. The (black) art of runtime evaluation: Are we comparing algorithms or implementations? Knowl. Inf. Syst., Vol. 52, 2 (2017), 341--378. https://doi.org/10.1007/s10115-016--1004--2
[43]
J. Leipzig, D. Nü st, C. T. Hoyt, K. Ram, and J. Greenberg. 2021. The role of metadata in reproducible computational research. Patterns, Vol. 2, 9 (2021), 100322. https://doi.org/10.1016/j.patter.2021.100322
[44]
J. Lin, X. Ma, S. Lin, J. Yang, R. Pradeep, and R. Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Information Retrieval Research with Sparse and Dense Representations. In SIGIR '21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, July 11--15, 2021, F. Diaz, C. Shah, T. Suel, P. Castells, R. Jones, and T. Sakai (Eds.). ACM, 2356--2362. https://doi.org/10.1145/3404835.3463238
[45]
J. Lin and P. Yang. 2019. The Impact of Score Ties on Repeatability in Document Ranking. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21--25, 2019, B. Piwowarski, M. Chevalier, E. Gaussier, Y. Maarek, J. Nie, and F. Scholer (Eds.). ACM, 1125--1128. https://doi.org/10.1145/3331184.3331339
[46]
J. Lin and Q. Zhang. 2020. Reproducibility is a Process, Not an Achievement: The Replicability of IR Reproducibility Experiments. In Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14--17, 2020, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12036), J. M. Jose, E. Yilmaz, J. Magalh a es, P. Castells, N. Ferro, M. J. Silva, and F. Martins (Eds.). Springer, 43--49. https://doi.org/10.1007/978--3-030--45442--5_6
[47]
A. Lipani, F. Piroi, L. Andersson, and A. Hanbury. 2014. An Information Retrieval Ontology for Information Retrieval Nanopublications. In Information Access Evaluation. Multilinguality, Multimodality, and Interaction - 5th International Conference of the CLEF Initiative, CLEF 2014, Sheffield, UK, September 15--18, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8685), E. Kanoulas, M. Lupu, P. D. Clough, M. Sanderson, M. M. Hall, A. Hanbury, and E. G. Toms (Eds.). Springer, 44--49. https://doi.org/10.1007/978--3--319--11382--1_5
[48]
T. Liu. 2009. Learning to Rank for Information Retrieval. Found. Trends Inf. Retr., Vol. 3, 3 (2009), 225--331. https://doi.org/10.1561/1500000016
[49]
S. MacAvaney, A. Yates, S. Feldman, D. Downey, A. Cohan, and N. Goharian. 2021. Simplified Data Wrangling with ir_datasets. In SIGIR '21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, July 11--15, 2021, F. Diaz, C. Shah, T. Suel, P. Castells, R. Jones, and T. Sakai (Eds.). ACM, 2429--2436. https://doi.org/10.1145/3404835.3463254
[50]
C. Macdonald and N. Tonellotto. 2020. Declarative Experimentation in Information Retrieval using PyTerrier. In ICTIR '20: The 2020 ACM SIGIR International Conference on the Theory of Information Retrieval, Virtual Event, Norway, September 14--17, 2020, K. Balog, V. Setty, C. Lioma, Y. Liu, M. Zhang, and K. Berberich (Eds.). ACM, 161--168. https://dl.acm.org/doi/10.1145/3409256.3409829
[51]
T. Miksa and A. Rauber. 2017. Using ontologies for verification and validation of workflow-based experiments. J. Web Semant., Vol. 43 (2017), 25--45. https://doi.org/10.1016/j.websem.2017.01.002
[52]
H. Mü hleisen, T. Samar, J. Lin, and A. P. de Vries. 2014. Old dogs are great at new tricks: column stores for ir prototyping. In The 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '14, Gold Coast, QLD, Australia - July 06 - 11, 2014, S. Geva, A. Trotman, P. Bruza, C. L. A. Clarke, and K. J"a rvelin (Eds.). ACM, 863--866. https://doi.org/10.1145/2600428.2609460
[53]
M. Potthast, T. Gollub, M. Wiegmann, and B. Stein. 2019. TIRA Integrated Research Architecture. In Information Retrieval Evaluation in a Changing World - Lessons Learned from 20 Years of CLEF, N. Ferro and C. Peters (Eds.). The Information Retrieval Series, Vol. 41. Springer, 123--160. https://doi.org/10.1007/978--3-030--22948--1_5
[54]
K. Ram. 2013. git can facilitate greater reproducibility and increased transparency in science. Source Code Biol. Medicine, Vol. 8 (2013), 7. https://doi.org/10.1186/1751-0473--8--7
[55]
R. A. Richardson, R. Celebi, S. Burg, D. Smits, L. Ridder, M. Dumontier, and T. Kuhn. 2021. User-friendly Composition of FAIR Workflows in a Notebook Environment. In K-CAP '21: Knowledge Capture Conference, Virtual Event, USA, December 2--3, 2021, A. L. Gentile and R. Goncc alves (Eds.). ACM, 1--8. https://doi.org/10.1145/3460210.3493546
[56]
D. Roy, M. Mitra, and D. Ganguly. 2018. To Clean or Not to Clean: Document Preprocessing and Reproducibility. ACM J. Data Inf. Qual., Vol. 10, 4 (2018), 18:1--18:25. https://doi.org/10.1145/3242180
[57]
P. Van Gorp and S. Mazanek. 2011. SHARE: a web portal for creating and sharing executable research papers. In Proceedings of the International Conference on Computational Science, ICCS 2011, Nanyang Technological University, Singapore, 1--3 June, 2011 (Procedia Computer Science, Vol. 4), M. Sato, S. Matsuoka, P. M. A. Sloot, G. D. Albada, and J. J. Dongarra (Eds.). Elsevier, 589--597. https://doi.org/10.1016/j.procs.2011.04.062
[58]
M. Vardigan, P. Heus, and W. Thomas. 2008. Data Documentation Initiative: Toward a Standard for the Social Sciences . International Journal of Digital Curation, Vol. 3, 1 (Dec. 2008), 107--113. https://doi.org/10.2218/ijdc.v3i1.45
[59]
E. M. Voorhees, S. Rajput, and I. Soboroff. 2016. Promoting Repeatability Through Open Runs. In Proceedings of the Seventh International Workshop on Evaluating Information Access, EVIA 2016, a Satellite Workshop of the NTCIR-12 Conference, National Center of Sciences, Tokyo, Japan, june 7, 2016, E. Yilmaz and C. L. A. Clarke (Eds.). National Institute of Informatics (NII) . http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/evia/04-EVIA2016-VoorheesE.pdf
[60]
W. Webber, A. Moffat, and J. Zobel. 2010. A similarity measure for indefinite rankings. ACM Trans. Inf. Syst., Vol. 28, 4 (2010), 20:1--20:38. https://doi.org/10.1145/1852102.1852106
[61]
P. Yang and H. Fang. 2016. A Reproducibility Study of Information Retrieval Models. In Proceedings of the 2016 ACM on International Conference on the Theory of Information Retrieval, ICTIR 2016, Newark, DE, USA, September 12- 6, 2016, B. Carterette, H. Fang, M. Lalmas, and J. Nie (Eds.). ACM, 77--86. https://doi.org/10.1145/2970398.2970415
[62]
P. Yang, H. Fang, and J. Lin. 2018. Anserini: Reproducible Ranking Baselines Using Lucene. ACM J. Data Inf. Qual., Vol. 10, 4 (2018), 16:1--16:20. https://doi.org/10.1145/3239571
[63]
W. Yang, K. Lu, P. Yang, and J. Lin. 2019. Critically Examining the "Neural Hype": Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21--25, 2019, B. Piwowarski, M. Chevalier, E. Gaussier, Y. Maarek, J. Nie, and F. Scholer (Eds.). ACM, 1129--1132. https://doi.org/10.1145/3331184.3331340
[64]
E. Yilmaz, N. Craswell, B. Mitra, and D. Campos. 2020. On the Reliability of Test Collections for Evaluating Systems of Different Types. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25--30, 2020, J. Huang, Y. Chang, X. Cheng, J. Kamps, V. Murdock, J. Wen, and Y. Liu (Eds.). ACM, 2101--2104. https://doi.org/10.1145/3397271.3401317
[65]
R. Yu, Y. Xie, and J. Lin. 2018. H2oloo at TREC 2018: Cross-Collection Relevance Transfer for the Common Core Track. In Proceedings of the Twenty-Seventh Text REtrieval Conference, TREC 2018, Gaithersburg, Maryland, USA, November 14--16, 2018 (NIST Special Publication, Vol. 500--331), E. M. Voorhees and A. Ellis (Eds.). National Institute of Standards and Technology (NIST) . https://trec.nist.gov/pubs/trec27/papers/h2oloo-CC.pdf
[66]
R. Yu, Y. Xie, and J. Lin. 2019. Simple Techniques for Cross-Collection Relevance Feedback. In Advances in Information Retrieval - 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, April 14--18, 2019, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11437), L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra (Eds.). Springer, 397--409. https://doi.org/10.1007/978--3-030--15712--8_26

Cited By

View all
  • (2024)Reproducible Hybrid Time-Travel Retrieval in Evolving CorporaProceedings of the 2024 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region10.1145/3673791.3698421(203-208)Online publication date: 8-Dec-2024
  • (2024)ReNeuIR at SIGIR 2024: The Third Workshop on Reaching Efficiency in Neural Information RetrievalProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657994(3051-3054)Online publication date: 10-Jul-2024
  • (2024)Browsing and Searching Metadata of TRECProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657873(313-323)Online publication date: 10-Jul-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGIR '22: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval
July 2022
3569 pages
ISBN:9781450387323
DOI:10.1145/3477495
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 July 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. information retrieval
  2. metadata
  3. reproducibility

Qualifiers

  • Research-article

Funding Sources

  • Deutsche Forschungsgemeinschaft (DFG)

Conference

SIGIR '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 792 of 3,983 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)29
  • Downloads (Last 6 weeks)2
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Reproducible Hybrid Time-Travel Retrieval in Evolving CorporaProceedings of the 2024 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region10.1145/3673791.3698421(203-208)Online publication date: 8-Dec-2024
  • (2024)ReNeuIR at SIGIR 2024: The Third Workshop on Reaching Efficiency in Neural Information RetrievalProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657994(3051-3054)Online publication date: 10-Jul-2024
  • (2024)Browsing and Searching Metadata of TRECProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657873(313-323)Online publication date: 10-Jul-2024
  • (2024)Mission Reproducibility: An Investigation on Reproducibility Issues in Machine Learning and Information Retrieval Research2024 IEEE 20th International Conference on e-Science (e-Science)10.1109/e-Science62913.2024.10678657(1-9)Online publication date: 16-Sep-2024
  • (2023)The Information Retrieval Experiment PlatformProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591888(2826-2836)Online publication date: 19-Jul-2023
  • (2023)ranxhub: An Online Repository for Information Retrieval RunsProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591823(3210-3214)Online publication date: 19-Jul-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media