Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3486622.3493956acmconferencesArticle/Chapter ViewAbstractPublication PageswiConference Proceedingsconference-collections
research-article

An Approach Based on Semantic Similarity to Explaining Link Predictions on Knowledge Graphs

Published: 13 April 2022 Publication History

Abstract

We propose approxSemanticCrossE, an approach for generating explanations to link prediction problems on Knowledge Graphs. Due to their incompleteness, several models have been proposed to predict missing relationships (link prediction task). To date, the most effective methods are based on embedding models, representing entities and relationships as a multi-dimensional vectors in a vector space. Explaining the results of this task means finding a meaningful reason for which entities are predicted as linked. This work presents a structural and semantically enriched approach for generating explanations for link predictions, by exploring the data available in the knowledge graph. The solution searches for paths and examples of similar situations that justify the prediction carried out using numerical approaches. Specifically, CrossE is adopted as the underlying embedding model to compute predictions. Then explanations are searched exploiting ad hoc semantic similarity measures. The proposed solution has been experimentally evaluated, showing that the new approach is able to provide meaningful explanations compared to the considered baseline.

References

[1]
F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider (Eds.). 2007. The Description Logic Handbook: Theory, Implementation and Applications (2nd ed.). CUP. https://doi.org/10.1017/CBO9780511711787
[2]
R. Bhowmik and G. de Melo. 2020. Explainable Link Prediction for Emerging Entities in Knowledge Graphs. In Proc. of ISWC 2020, J. Pan et al. (Eds.). Springer, 39–55. https://doi.org/10.1007/978-3-030-62419-4_3
[3]
A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational Data. In Proc. of NIPS 2013, C. J. C. Burges et al. (Eds.). Curran Associates, Inc., 2787–2795.
[4]
S. Chari, O. Seneviratne, D.M. Gruen, M.A. Foreman, A.K. Das, and D.L. McGuinness. 2020. Explanation Ontology: A Model of Explanations for User-Centered AI. In Proc. of ISWC 2020(LNCS, Vol. 12507), J.Z. Pan et al. (Eds.). Springer, 228–243. https://doi.org/10.1007/978-3-030-62466-8_15
[5]
M. Färber, F. Bartscherer, C. Menne, and A. Rettinger. 2017. Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semantic Web 9(2017), 1–53. https://doi.org/10.3233/SW-170275
[6]
M.H. Gad-Elrab, D. Stepanova, T.-K. Tran, H. Adel, and G. Weikum. 2020. ExCut: Explainable Embedding-Based Clustering over Knowledge Graphs. In Proc. of ISWC 2020(LNCS, Vol. 12506), J.Z. Pan et al. (Eds.). Springer, 218–237. https://doi.org/10.1007/978-3-030-62419-4_13
[7]
A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutiérrez, J.E. Labra Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A.-C. Ngonga Ngomo, S.M. Rashid, A. Rula, L. Schmelzeisen, J.F. Sequeda, S. Staab, and A. Zimmermann. 2020. Knowledge Graphs. Comput. Surveys 54(2020), 1–37. Issue 4. https://doi.org/10.1145/3447772
[8]
S. Ji, S. Pan, E. Cambria, P. Marttinen, and P.S. Yu. 2020. A Survey on Knowledge Graphs: Representation, Acquisition and Applications. CoRR (2020). arxiv:2002.00388
[9]
F. Lécué, B. Abeloos, J. Anctil, M. Bergeron, D. Dalla-Rosa, S. Corbeil-Letourneau, F. Martet, T. Pommellet, L. Salvan, S. Veilleux, and M. Ziaeefard. 2019. Thales XAI Platform: Adaptable Explanation of Machine Learning Systems - A Knowledge Graphs Perspective. In Proc. of the ISWC 2019 Satellite Tracks(CEUR Workshop Proceedings, Vol. 2456), M.C. Suárez-Figueroa et al. (Eds.). CEUR-WS.org, 315–316. http://ceur-ws.org/Vol-2456/paper85.pdf
[10]
F. Lécué and J. Wu. 2018. Semantic Explanations of Predictions. CoRR abs/1805.10587(2018). arxiv:1805.10587
[11]
J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes, S. Hellmann, M. Morsey, P. Van Kleef, S. Auer, and C. Bizer. 2014. DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web 6(2014), 167–195. https://doi.org/10.3233/SW-140134
[12]
H. Liu, Y. Wu, and Y. Yang. 2017. Analogical inference for multi-relational embeddings. In Proc. of ICML 2017. 2168–2178.
[13]
P. Wang, J. Han, C. Li, and R. Pan. 2019. Logic Attention Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding. In Proc. of AAAI 2019. AAAI Press, 7152–7159. https://doi.org/10.1609/aaai.v33i01.33017152
[14]
W. Zhang, B. Paudel, W. Zhang, A. Bernstein, and H. Chen. 2019. Interaction Embeddings for Prediction and Explanation in Knowledge Graphs. In WSDM’19. ACM, 96–104. https://doi.org/10.1145/3289600.3291014

Cited By

View all
  • (2024)Comprehensible Artificial Intelligence on Knowledge GraphsWeb Semantics: Science, Services and Agents on the World Wide Web10.1016/j.websem.2023.10080679:COnline publication date: 4-Mar-2024
  • (2024)Deep sequence to sequence semantic embedding with attention for entity linking in context of incomplete linked dataEngineering Applications of Artificial Intelligence10.1016/j.engappai.2024.108689134(108689)Online publication date: Aug-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WI-IAT '21: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology
December 2021
698 pages
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 April 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Knowledge Graphs
  2. embedding models
  3. explanation
  4. link prediction

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

WI-IAT '21
Sponsor:
WI-IAT '21: IEEE/WIC/ACM International Conference on Web Intelligence
December 14 - 17, 2021
VIC, Melbourne, Australia

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)15
  • Downloads (Last 6 weeks)4
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Comprehensible Artificial Intelligence on Knowledge GraphsWeb Semantics: Science, Services and Agents on the World Wide Web10.1016/j.websem.2023.10080679:COnline publication date: 4-Mar-2024
  • (2024)Deep sequence to sequence semantic embedding with attention for entity linking in context of incomplete linked dataEngineering Applications of Artificial Intelligence10.1016/j.engappai.2024.108689134(108689)Online publication date: Aug-2024

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media