Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3487553.3524203acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article
Open access

DC-GNN: Decoupled Graph Neural Networks for Improving and Accelerating Large-Scale E-commerce Retrieval

Published: 16 August 2022 Publication History

Abstract

In large-scale E-commerce retrieval, the Graph Neural Networks (GNNs) has become one of the stage-of-the-arts due to its powerful capability on topological feature extraction and relational reasoning. However, the conventional GNNs-based large-scale E-commerce retrieval suffers from low training efficiency, as such scenario normally has billions of entities and tens of billions of relations. Under the limitation on efficiency, only shallow graph algorithms can be employed, which severely hinders the GNNs representation capability and consequently weakens the retrieval quality. In order to deal with the trade-off between training efficiency and representation capability, we propose the Decoupled Graph Neural Networks (DC-GNN) to improve and accelerate the GNNs-based large-scale E-commerce retrieval. Specifically, DC-GNN decouples the conventional framework into three stages: pre-train, deep aggregation, and CTR prediction. By decoupling the graph operations and the CTR prediction, DC-GNN can effectively improve the training efficiency. More importantly, it can enable deeper graph operations to adequately mine higher-order proximity to boost model performance. Extensive experiments on large-scale industrial datasets demonstrate that DC-GNN gains significant improvements in both model performance and training efficiency.

References

[1]
Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020. Scaling graph neural networks with approximate pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2464–2473.
[2]
Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. 135–144.
[3]
John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization.Journal of machine learning research 12, 7 (2011).
[4]
Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. 2005. Internet Advertising and the Generalized Second Price Auction: Selling Billions of Dollars Worth of Keywords. Working Paper 11765. National Bureau of Economic Research. https://doi.org/10.3386/w11765
[5]
Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, and Ping Li. 2019. MOBIUS: Towards the Next Generation of Query-Ad Matching in Baidu’s Sponsored Search. In KDD. ACM, 2509–2517.
[6]
Hongliang Fei, Jingyuan Zhang, Xingxuan Zhou, Junhao Zhao, Xinyang Qi, and Ping Li. 2021. GemNN: gating-enhanced multi-task neural networks with feature interaction learning for CTR prediction. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2166–2171.
[7]
Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198(2020).
[8]
Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. 855–864.
[9]
Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, and Dawei Yin. 2020. Hierarchical User Profiling for E-commerce Recommender Systems. In WSDM. ACM, 223–231.
[10]
Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, and Ananthram Swami. 2020. Graphcl: Contrastive self-supervised learning of graph representations. arXiv preprint arXiv:2007.08025(2020).
[11]
William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems. 1025–1035.
[12]
Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view representation learning on graphs. In International Conference on Machine Learning. PMLR, 4116–4126.
[13]
Li He, Hongxu Chen, Dingxian Wang, Shoaib Jameel, Philip Yu, and Guandong Xu. 2021. Click-Through Rate Prediction with Multi-Modal Hypergraphs. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 690–699.
[14]
Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. 639–648.
[15]
W Hu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, and J Leskovec. 2020. Strategies For Pre-training Graph Neural Networks. In International Conference on Learning Representations (ICLR).
[16]
Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020. Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1857–1867.
[17]
Ziniu Hu, Changjun Fan, Ting Chen, Kai-Wei Chang, and Yizhou Sun. 2019. Pre-training graph neural networks for generic structural feature extraction. arXiv preprint arXiv:1905.13728(2019).
[18]
Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2553–2561.
[19]
Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry P. Heck. 2013. Learning deep structured semantic models for web search using clickthrough data. In CIKM. ACM, 2333–2338.
[20]
Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907(2016).
[21]
Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Predict then Propagate: Graph Neural Networks meet Personalized PageRank. In International Conference on Learning Representations.
[22]
Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix factorization. Advances in neural information processing systems 27 (2014), 2177–2185.
[23]
Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. 2019. Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 539–548.
[24]
Fan Liu, Zhiyong Cheng, Lei Zhu, Zan Gao, and Liqiang Nie. 2021. Interest-aware Message-Passing GCN for Recommendation. In Proceedings of the Web Conference 2021. 1296–1305.
[25]
Shichen Liu, Fei Xiao, Wenwu Ou, and Luo Si. 2017. Cascade Ranking for Operational E-commerce Search. In KDD. ACM, 1557–1565.
[26]
Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to pre-train graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4276–4284.
[27]
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems. 3111–3119.
[28]
Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank citation ranking: Bringing order to the web.Technical Report. Stanford InfoLab.
[29]
Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou Huang. 2020. Graph representation learning via graphical mutual information maximization. In Proceedings of The Web Conference 2020. 259–270.
[30]
Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 701–710.
[31]
Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph neural network pre-training. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1150–1160.
[32]
Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018. Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the eleventh ACM international conference on web search and data mining. 459–467.
[33]
Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. 385–394.
[34]
Daria Sorokina and Erick Cantú-Paz. 2016. Amazon Search: The Joy of Ranking Products. In SIGIR. ACM, 459–460.
[35]
Arjun Subramonian. 2021. MOTIF-Driven Contrastive Learning of Graph Representations. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 15980–15981.
[36]
Fan-Yun Sun, Jordon Hoffman, Vikas Verma, and Jian Tang. 2020. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. In International Conference on Learning Representations.
[37]
Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial Graph Augmentation to Improve Graph Contrastive Learning. arXiv preprint arXiv:2106.05819(2021).
[38]
Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. Line: Large-scale information network embedding. In Proceedings of the 24th international conference on world wide web. 1067–1077.
[39]
Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Conference on Learning Representations.
[40]
Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm. 2018. Deep Graph Infomax. In International Conference on Learning Representations.
[41]
Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural graph collaborative filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval. 165–174.
[42]
Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. 2019. Simplifying graph convolutional networks. In International conference on machine learning. PMLR, 6861–6871.
[43]
Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. 2021. Self-supervised graph learning for recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 726–735.
[44]
Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in Neural Information Processing Systems 33 (2020), 5812–5823.
[45]
Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural networks. Advances in Neural Information Processing Systems 31 (2018), 5165–5175.
[46]
Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021. Graph contrastive learning with adaptive augmentation. In Proceedings of the Web Conference 2021. 2069–2080.

Cited By

View all
  • (2024)Node Classification in Weighted Complex Networks Using Neighborhood Feature SimilarityIEEE Transactions on Emerging Topics in Computational Intelligence10.1109/TETCI.2024.33804818:6(3982-3994)Online publication date: Dec-2024
  • (2023)E-commerce Search via Content Collaborative Graph Neural NetworkProceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3580305.3599320(2885-2897)Online publication date: 6-Aug-2023

Index Terms

  1. DC-GNN: Decoupled Graph Neural Networks for Improving and Accelerating Large-Scale E-commerce Retrieval

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    WWW '22: Companion Proceedings of the Web Conference 2022
    April 2022
    1338 pages
    ISBN:9781450391306
    DOI:10.1145/3487553
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 16 August 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Graph Neural Networks
    2. graph acceleration
    3. information retrieval

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    WWW '22
    Sponsor:
    WWW '22: The ACM Web Conference 2022
    April 25 - 29, 2022
    Virtual Event, Lyon, France

    Acceptance Rates

    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)263
    • Downloads (Last 6 weeks)23
    Reflects downloads up to 15 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Node Classification in Weighted Complex Networks Using Neighborhood Feature SimilarityIEEE Transactions on Emerging Topics in Computational Intelligence10.1109/TETCI.2024.33804818:6(3982-3994)Online publication date: Dec-2024
    • (2023)E-commerce Search via Content Collaborative Graph Neural NetworkProceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3580305.3599320(2885-2897)Online publication date: 6-Aug-2023

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media