Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3490148.3538569acmconferencesArticle/Chapter ViewAbstractPublication PagesspaaConference Proceedingsconference-collections
research-article
Open access

Parallel Batch-Dynamic Algorithms for k-Core Decomposition and Related Graph Problems

Published: 11 July 2022 Publication History

Abstract

Maintaining a k-core decomposition quickly in a dynamic graph has important applications in network analysis. The main challenge for designing efficient exact algorithms is that a single update to the graph can cause significant global changes. Our paper focuses on approximation algorithms with small approximation factors that are much more efficient than what exact algorithms can obtain.

References

[1]
J. Ignacio Alvarez-Hamelin, Luca Dall'Asta, Alain Barrat, and Alessandro Vespignani. 2005. Large Scale Networks Fingerprinting and Visualization Using the k-Core Decomposition. In International Conference on Neural Information Processing Systems.
[2]
Altaf Amin, Yoko Shinbo, Kenji Mihara, Ken Kurokawa, and Shigehiko Kanaya. 2006. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC bioinformatics 7 (02 2006), 207.
[3]
Richard Anderson and Ernst W. Mayr. 1984. A P-complete Problem and Approximations to It. Technical Report.
[4]
Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Velegrakis. 2016. Distributed -Core Decomposition and Maintenance in Large Dynamic Graphs. In ACM International Conference on Distributed and Event-Based Systems. 161--168.
[5]
Gary D. Bader and Christopher WV Hogue. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 1 (Jan. 2003), 2.
[6]
Edvin Berglin and Gerth Stølting Brodal. 2020. A Simple Greedy Algorithm for Dynamic Graph Orientation. Algorithmica 82, 2 (feb 2020), 245--259.
[7]
Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos Tsourakakis. 2015. Space- and Time-Efficient Algorithm for Maintaining Dense Subgraphs on One-Pass Dynamic Streams. In ACM Symposium on Theory of Computing (STOC). 173--182.
[8]
Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Brief Announcement: ParlayLib -- A Toolkit for Parallel Algorithms on Shared-MemoryMulticore Machines. In ACM Symp. on Parallel Alg. (SPAA).
[9]
Guy E. Blelloch and Bruce M. Maggs. 1996. Parallel Algorithms. Commun. ACM 39 (1996), 85--97.
[10]
Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich. 2014. Core Decomposition of Uncertain Graphs. In ACM SIGKDD. 1316--1325.
[11]
Gerth Stølting Brodal and Rolf Fagerberg. 1999. Dynamic Representations of Sparse Graphs. In Proc. 6th International Workshop on Algorithms and Data Structures (WADS). 342--351.
[12]
Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. 2007. A model of Internet topology using k-shell decomposition. Proceedings of the National Academy of Sciences 104, 27 (2007), 11150--11154.
[13]
T.-H. Hubert Chan, Mauro Sozio, and Bintao Sun. 2021. Distributed approximate k-core decomposition and min-max edge orientation: Breaking the diameter barrier. J. Parallel Distributed Comput. 147 (2021), 87--99.
[14]
Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang, Yinglong Xia, and Chenyi Zhang. 2020. Finding the Best in Core Decomposition: A Time and Space Optimal Solution. In IEEE ICDE. 685--696.
[15]
Martino Ciaperoni, Edoardo Galimberti, Francesco Bonchi, Ciro Cattuto, Francesco Gullo, and Alain Barrat. 2020. Relevance of temporal cores for epidemic spread in temporal networks. Scientific Reports 10, 1 (July 2020).
[16]
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms (3. ed.). MIT Press.
[17]
Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. 2008. Implementation Challenge for Shortest Paths. 395--398.
[18]
Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2017. Julienne: A Framework for Parallel Graph Algorithms Using Work-efficient Bucketing. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 293--304.
[19]
Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
[20]
Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. 2021. Parallel Batch-Dynamic k-Clique Counting. In 2nd Symposium on Algorithmic Principles of Computer Systems (APOCS). 129--143.
[21]
Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2009. Extraction and Classification of Dense Implicit Communities in the Web Graph. ACM Trans. Web 3, 2, Article 7 (April 2009), 36 pages.
[22]
Zdenek Dvorák and Vojtech Tuma. 2013. A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs. In International Workshop on Algorithms and Data Structures (WADS). 304--315.
[23]
Fatemeh Esfahani, Venkatesh Srinivasan, Alex Thomo, and KuiWu. 2019. Efficient Computation of Probabilistic Core Decomposition at Web-Scale. In International Conference on Extending Database Technology. 325--336.
[24]
Hossein Esfandiari, Silvio Lattanzi, and Vahab Mirrokni. 2018. Parallel and Streaming Algorithms for -Core Decomposition. In International Conference on Machine Learning. 1397--1406.
[25]
Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng Hu. 2017. Effective Community Search over Large Spatial Graphs. Proc. VLDB Endow. 10, 6 (Feb. 2017), 709--720.
[26]
Kasimir Gabert, Ali Pinar, and Ümit V. Çatalyürek. 2021. Shared-Memory Scalable k-Core Maintenance on Dynamic Graphs and Hypergraphs. In IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). 998--1007.
[27]
Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano. 2020. Core Decomposition in Multilayer Networks: Theory, Algorithms, and Applications. ACM Trans. Knowl. Discov. Data 14, 1, Article 11 (Jan. 2020).
[28]
Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrovic. 2019. Improved Parallel Algorithms for Density-Based Network Clustering. In International Conference on Machine Learning. 2201--2210.
[29]
Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2014. CoreCluster: A Degeneracy Based Graph Clustering Framework. In AAAI. 44--50.
[30]
J. Gil, Y. Matias, and U. Vishkin. 1991. Towards a theory of nearly constant time parallel algorithms. In IEEE FOCS. 698--710.
[31]
Meng He, Ganggui Tang, and Norbert Zeh. 2014. Orienting Dynamic Graphs, with Applications to Maximal Matchings and Adjacency Queries. In International Symposium on Algorithms and Computation. 128--140.
[32]
John Healy, Jeannette Janssen, Evangelos Milios, and William Aiello. 2007. Characterization of Graphs Using Degree Cores. In InternationalWorkshop on Algorithms and Models for the Web-Graph (WAW). 137--148.
[33]
Monika Henzinger, Stefan Neumann, and Andreas Wiese. 2020. Explicit and Implicit Dynamic Coloring of Graphs with Bounded Arboricity. CoRR abs/2002.10142 (2020).
[34]
Q. Hua, Y. Shi, D. Yu, H. Jin, J. Yu, Z. Cai, X. Cheng, and H. Chen. 2020. Faster Parallel Core Maintenance Algorithms in Dynamic Graphs. IEEE Transactions on Parallel and Distributed Systems 31, 6 (2020), 1287--1300.
[35]
J. Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Professional.
[36]
H. Jin, N. Wang, D. Yu, Q. Hua, X. Shi, and X. Xie. 2018. Core Maintenance in Dynamic Graphs: A Parallel Approach Based on Matching. IEEE Transactions on Parallel and Distributed Systems 29, 11 (2018), 2416--2428.
[37]
H. Kabir and K. Madduri. 2017. Parallel -Core Decomposition on Multicore Platforms. In IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). 1482--1491.
[38]
Haim Kaplan and Shay Solomon. 2018. Dynamic Representations of Sparse Distributed Networks: A Locality-Sensitive Approach. In ACM Symposium on Parallelism in Algorithms and Architectures. 33--42.
[39]
Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015. K-Core Decomposition of Large Networks on a Single PC. Proc. VLDB Endow. 9, 1 (Sept. 2015), 13--23.
[40]
Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H. Eugene Stanley, and Hernán A. Makse. 2010. Identification of influential spreaders in complex networks. Nature Physics 6, 11 (Nov. 2010), 888--893.
[41]
Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. 2014. Orienting Fully Dynamic Graphs with Worst-Case Time Bounds. In International Colloquium on Automata, Languages and Programming (ICALP). 532--543.
[42]
Lukasz Kowalik. 2007. Adjacency queries in dynamic sparse graphs. Inf. Process. Lett. 102, 5 (2007), 191--195.
[43]
Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a Social Network or a News Media?. In International Conference on World Wide Web. 591--600.
[44]
Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. 2010. A Survey of Algorithms for Dense Subgraph Discovery. In Managing and Mining Graph Data. 303--336.
[45]
Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data. (June 2014).
[46]
Conggai Li, Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2019. Efficient Progressive Minimum K-Core Search. Proc. VLDB Endow. 13, 3 (Nov. 2019), 362--375.
[47]
Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in Large Dynamic Graphs. IEEE Transactions on Knowledge and Data Engineering 26, 10 (2014), 2453--2465.
[48]
Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian Shun. 2022. Parallel Batch-Dynamic Algorithms for -Core Decomposition and Related Graph Problems. https://arxiv.org/abs/2106.03824
[49]
Ying Liu, Ming Tang, Tao Zhou, and Younghae Do. 2015. Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition. Scientific Reports 5 (May 2015), 9602--9602.
[50]
Qi Luo, Dongxiao Yu, Zhipeng Cai, Xuemin Lin, and Xiuzhen Cheng. 2021. Hypercore Maintenance in Dynamic Hypergraphs. In IEEE ICDE. 2051--2056.
[51]
Qi Luo, Dongxiao Yu, Feng Li, Zhenhao Dou, Zhipeng Cai, Jiguo Yu, and Xiuzhen Cheng. 2019. Distributed Core Decomposition in Probabilistic Graphs. In Computational Data and Social Networks. 16--32.
[52]
Fragkiskos D. Malliaros, Maria-Evgenia G. Rossi, and Michalis Vazirgiannis. 2016. Locating influential nodes in complex networks. Scientific Reports 6, 1 (2016).
[53]
DavidW. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and Clustering and Graph Coloring Algorithms. J. ACM 30, 3 (July 1983), 417--427.
[54]
Sourav Medya, Tianyi Ma, Arlei Silva, and Ambuj Singh. 2020. A Game Theoretic Approach For K-Core Minimization. In 19th International Conference on Autonomous Agents and MultiAgent Systems. 1922--1924.
[55]
Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis, and Shen Chen Xu. 2015. Scalable Large Near-Clique Detection in Large-Scale Networks via Sampling. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 815--824.
[56]
Ofer Neiman and Shay Solomon. 2015. Simple deterministic algorithms for fully dynamic maximal matching. ACM Trans. on Alg. (TALG) 12, 1 (2015), 1--15.
[57]
Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with Interactive Graph Analytics and Visualization. In AAAI. 4292--4293. http: //networkrepository.com
[58]
Ahmet Erdem Sariyüce, Gabriela Jacques-Silva, Kun-Lung Wu, and Ümit V. Çatalyürek. 2016. Incremental -core decomposition: algorithms and evaluation. The VLDB Journal 25, 3 (2016), 425--447.
[59]
Ahmet Erdem Saríyüce, Gabriela Jacques-Silva, Kun-Lung Wu, and Ümit V. Çatalyürek. 2013. Streaming Algorithms for K-Core Decomposition. Proc. VLDB Endow. 6, 6 (April 2013), 433--444.
[60]
Saurabh Sawlani and Junxing Wang. 2020. Near-Optimal Fully Dynamic Densest Subgraph. In ACM SIGACT Symposium on Theory of Computing. 181--193.
[61]
Jessica Shi, Laxman Dhulipala, and Julian Shun. 2021. Parallel Clique Counting and Peeling Algorithms. In SIAM Conference on Applied and Computational Discrete Algorithms (ACDA). 135--146.
[62]
Shay Solomon and Nicole Wein. 2020. Improved Dynamic Graph Coloring. ACM Trans. on Alg. (TALG) 16, 3, Article 41 (June 2020).
[63]
Bintao Sun, T.-H. Hubert Chan, and Mauro Sozio. 2020. Fully Dynamic Approximate -Core Decomposition in Hypergraphs. ACM Trans. Knowl. Discov. Data 14, 4, Article 39 (May 2020).
[64]
Bintao Sun, T-H. Hubert Chan, and Mauro Sozio. 2020. Fully Dynamic Approximate -Core Decomposition in Hypergraphs. https://github.com/btsun/ DynHyperCoreDecomp
[65]
Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch. 2019. Batch-Parallel Euler Tour Trees. In Workshop on Algorithm Engineering and Experiments (ALENEX). 92--106.
[66]
Kai Wang, Xin Cao, Xuemin Lin, Wenjie Zhang, and Lu Qin. 2018. Efficient Computing of Radius-Bounded k-Cores. In IEEE ICDE. 233--244.
[67]
Na Wang, Dongxiao Yu, Hai Jin, Chen Qian, Xia Xie, and Qiang-Sheng Hua. 2017. Parallel Algorithm for Core Maintenance in Dynamic Graphs. In IEEE 37th International Conference on Distributed Computing Systems (ICDCS). 2366--2371.
[68]
Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network communities based on ground-truth. Knowledge and Information Systems 42, 1 (Jan. 2015), 181--213.
[69]
Fan Zhang, Ying Zhang, Lu Qin,Wenjie Zhang, and Xuemin Lin. 2017. When Engagement Meets Similarity: Efficient (k,r)-Core Computation on Social Networks. Proc. VLDB Endow. 10, 10 (June 2017), 998--1009.
[70]
Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. 2010. Using the kcore decomposition to analyze the static structure of large-scale software systems. J. Supercomput. 53, 2 (2010), 352--369.
[71]
Y. Zhang, J. Yu, Y. Zhang, and L. Qin. 2017. A Fast Order-Based Approach for Core Maintenance. In IEEE ICDE. 337--348.
[72]
Yikai Zhang and Jeffrey Xu Yu. 2019. Unboundedness and Efficiency of Truss Maintenance in Evolving Graphs. In ACM SIGMOD International Conference on Management of Data. 1024--1041.

Cited By

View all
  • (2024)Parallel Algorithms for Hierarchical Nucleus DecompositionProceedings of the ACM on Management of Data10.1145/36392872:1(1-27)Online publication date: 26-Mar-2024
  • (2024)Parallel Dynamic Maximal MatchingProceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3626183.3659982(427-437)Online publication date: 17-Jun-2024
  • (2024)Maintaining Top-$t$ Cores in Dynamic GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.333263836:9(4766-4780)Online publication date: Sep-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SPAA '22: Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures
July 2022
464 pages
ISBN:9781450391467
DOI:10.1145/3490148
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 July 2022

Check for updates

Badges

  • Best Paper

Author Tags

  1. low out-degree orientation
  2. maximal matching
  3. parallel batch-dynamic algorithms
  4. vertex coloring

Qualifiers

  • Research-article

Funding Sources

Conference

SPAA '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 447 of 1,461 submissions, 31%

Upcoming Conference

SPAA '25
37th ACM Symposium on Parallelism in Algorithms and Architectures
July 28 - August 1, 2025
Portland , OR , USA

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)298
  • Downloads (Last 6 weeks)49
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Parallel Algorithms for Hierarchical Nucleus DecompositionProceedings of the ACM on Management of Data10.1145/36392872:1(1-27)Online publication date: 26-Mar-2024
  • (2024)Parallel Dynamic Maximal MatchingProceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3626183.3659982(427-437)Online publication date: 17-Jun-2024
  • (2024)Maintaining Top-$t$ Cores in Dynamic GraphsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.333263836:9(4766-4780)Online publication date: Sep-2024
  • (2024)Fast Multilayer Core Decomposition and Indexing2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00211(2695-2708)Online publication date: 13-May-2024
  • (2024)Simplified algorithms for order-based core maintenanceThe Journal of Supercomputing10.1007/s11227-024-06190-x80:13(19592-19623)Online publication date: 28-May-2024
  • (2023)BatchHL: batch dynamic labelling for distance queries on large-scale networksThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-023-00799-933:1(101-129)Online publication date: 7-Jun-2023
  • (2022)Differential Privacy from Locally Adjustable Graph Algorithms: k-Core Decomposition, Low Out-Degree Ordering, and Densest Subgraphs2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS54457.2022.00077(754-765)Online publication date: Oct-2022

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media