Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3498361.3538930acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article

Content-agnostic backscatter from thin air

Published: 27 June 2022 Publication History
  • Get Citation Alerts
  • Abstract

    We present CAB, a content-agnostic backscatter system that can demodulate both tag and ambient data from ambient backscattered WiFi alone. In contrast to prior ambient backscatter systems that use ambient data (content) as tag-data carriers, we focus on zero-subcarriers, which are invariant and independent for any ambient OFDM WiFi. The idea of using zero-subcarriers to convey tag data is simple and elegant. Not only does it for the first time remove the dependency of tag-data demodulation on ambient data, but it also significantly improves the practicality of ambient backscatter.
    We prototype CAB using off-the-shelf FPGAs and SDRs. Extensive experiments show CAB is universal as it can work with multi-band, multi-stream, and multi-user ambient traffic, including WiFi 3/4/5/6. CAB is also high-performing since it can deliver 340.9 Mbps aggregate throughput, reaching 97% Shannon capacity. Since CAB is general, we extend it to leverage ambient LTE traffic as excitations, and the achieved tag-data BER is below 0.002%. As the first content-agnostic backscatter that delivers near Shannon-capacity throughput, we believe CAB takes a curial step forward on ubiquitous battery-free IoTs.

    References

    [1]
    [n. d.]. 802.11a. https://standards.ieee.org/standard/802_11a-1999.html. ([n. d.]).
    [2]
    [n. d.]. 802.11ac. https://standards.ieee.org/standard/802_11ac-2013.html. ([n. d.]).
    [3]
    [n. d.]. 802.11ax. https://standards.ieee.org/standard/802_11ax-2021.html. ([n. d.]).
    [4]
    [n. d.]. 802.11g. https://standards.ieee.org/standard/802_11g-2003.html. ([n. d.]).
    [5]
    [n. d.]. 802.11n. https://standards.ieee.org/standard/802_11n-2009.html. ([n. d.]).
    [6]
    [n. d.]. Bluetooth. https://www.bluetooth.com/specifications/bluetooth-core-specification/. ([n. d.]).
    [7]
    [n. d.]. CSI Tool. https://dhalperi.github.io/linux-80211n-csitool/. ([n. d.]).
    [8]
    [n. d.]. FMCOMMS3. https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms3-ebz. ([n. d.]).
    [9]
    [n. d.]. gnuradio. https://www.gnuradio.org/. ([n. d.]).
    [10]
    [n. d.]. LTE specification. https://www.3gpp.org/IMG/pdf/2009_10_3gpp_IMT.pdf. ([n. d.]).
    [11]
    [n. d.]. OpenAirInterface. https://gitlab.eurecom.fr/oai/openairinterface5g/. ([n. d.]).
    [12]
    [n. d.]. srsLTE. https://github.com/srsran/srsran. ([n. d.]).
    [13]
    [n. d.]. Twitch. https://www.twitch.tv. ([n. d.]).
    [14]
    [n. d.]. WISP 5.0. https://github.com/wisp/wisp5. ([n. d.]).
    [15]
    [n. d.]. YouTube. https://www.youtube.com. ([n. d.]).
    [16]
    [n. d.]. zedboard. https://digilent.com/reference/_media/zedboard:zedboard_ug.pdf. ([n. d.]).
    [17]
    2017. EPC C1G2 Standard. http://www.gs1.org/epcrfid/epcrfid-uhf-air-interface-protocol/2-0-1. (2017).
    [18]
    M. R. Abdelhamid, R. Chen, J. Cho, A. P. Chandrakasan, and F. Adib. 2020. Self-reconfigurable micro-implants for cross-tissue wireless and batteryless connectivity. In Proc. of ACM MobiCom.
    [19]
    D. Bharadia, K. Joshi, M. Kotaru, and S. Katti. 2015. Backfi: High throughput wifi backscatter. In Proc. of ACM SIGCOMM.
    [20]
    Z. Chi, X. Liu, W. Wang, Y. Yao, and T. Zhu. 2020. Leveraging ambient lte traffic for ubiquitous passive communication. In Proc. of ACM SIGCOMM.
    [21]
    Daniel Dobkin. 2012. The rf in RFID: uhf RFID in practice. Newnes.
    [22]
    M. Dunna, M. Meng, P.H. Wang, C. Zhang, P.P. Mercier, and D. Bharadia. 2021. SyncScatter: Enabling WiFi like synchronization and range for WiFi backscatter Communication. In Proc. of USENIX NSDI.
    [23]
    W. Gong, S. Chen, and J. Liu. 2017. Towards higher throughput rate adaptation for backscatter networks. In Proc. of IEEE ICNP.
    [24]
    W. Gong, S. Chen, J. Liu, and Z. Wang. 2018. Mobirate: Mobility-aware rate adaptation using phy information for backscatter networks. In Proc. of IEEE INFOCOM.
    [25]
    W. Gong, H. Liu, J. Liu, X. Fan, K. Liu, Q. Ma, and X. Ji. 2018. Channel-aware rate adaptation for backscatter networks. IEEE/ACM Transactions on Networking 26, 2 (2018), 751--764.
    [26]
    W. Gong, H. Liu, K. Liu, Q. Ma, and Y. Liu. 2016. Exploiting channel diversity for rate adaptation in backscatter communication networks. In Proc. of IEEE INFOCOM.
    [27]
    W. Gong, J. Liu, and Z. Yang. 2016. Fast and reliable unknown tag detection in large-scale RFID systems. In Proc. of ACM MobiHoc.
    [28]
    W. Gong, J. Liu, and Z. Yang. 2017. Efficient unknown tag detection in large-scale RFID systems with unreliable channels. IEEE/ACM Transactions on Networking 25, 4 (2017), 2528--2539.
    [29]
    W. Gong, I. Stojmenovic, A. Nayak, K. Liu, and H Liu. 2015. Fast and scalable counterfeits estimation for large-scale RFID systems. IEEE/ACM Transactions on Networking 24, 2 (2015), 1052--1064.
    [30]
    W. Gong, L. Yuan, Q. Wang, and J. Zhao. 2020. Multiprotocol backscatter for personal IoT sensors. In Proc. of ACM CONEXT.
    [31]
    V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. Smith. 2016. Inter-technology backscatter: Towards internet connectivity for implanted devices. In Proc. of ACM SIGCOMM.
    [32]
    J. Jang and F. Adib. 2019. Underwater Backscatter Networking. In Proc. of ACM SIGCOMM.
    [33]
    P. Kamalinejad, K. Keikhosravy, R. Molavi, S. Mirabbasi, and Vcm Leung. 2014. An ultra-low-power CMOS voltage-controlled ring oscillator for passive RFID tags. In Proc. of IEEE NEWCAS.
    [34]
    B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall. 2014. Wi-Fi backscatter: Internet connectivity for RF-powered devices. In Proc. of ACM SIGCOMM.
    [35]
    B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith. 2016. Passive wi-fi: Bringing low power to wi-fi transmissions. In Proc. of USENIX NSDI.
    [36]
    K. K. Lee, K. Granhaug, and N. Andersen. 2014. A study of low-power crystal oscillator design. In Proc. of IEEE NORCHIP.
    [37]
    K. C.-J. Lin, S. Gollakota, and D. Katabi. 2011. Random access heterogeneous MIMO networks. (2011).
    [38]
    H. Liu, W. Gong, L. Chen, W. He, K. Liu, and Y. Liu. 2014. Generic composite counting in RFID systems. In Proc. of IEEE ICDCS.
    [39]
    V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith. 2013. Ambient backscatter: wireless communication out of thin air. In Proc. of ACM SIGCOMM.
    [40]
    X. Liu, Z. Chi, W. Wang, Y. Yao, P. Hao, and T. Zhu. 2021. Verification and Redesign of OFDM Backscatter. In Proc. of USENIX NSDI.
    [41]
    Y. Ma, Z. Luo, C. Steiger, G. Traverso, and F. Adib. 2018. Enabling deep-tissue networking for miniature medical devices. In Proc. of ACM SIGCOMM.
    [42]
    M. H. Mazaheri, A. Chen, and O. Abari. 2021. mmTag: a millimeter wave backscatter network. In Proc. of ACM SIGCOMM.
    [43]
    S. Naderiparizi, M. Hessar, V. Talla, S. Gollakota, and J. R. Smith. 2018. Towards battery-free HD video streaming. In Proc. of USENIX NSDI.
    [44]
    Y. Peng, L. Shangguan, Y. Hu, Y. Qian, X. Lin, X. Chen, D. Fang, and K. Jamieson. 2018. PLoRa: A passive long-range data network from ambient LoRa transmissions. In Proc. of ACM SIGCOMM.
    [45]
    H. Rahul, H. Hassanieh, and D. Katabi. 2010. SourceSync: A distributed wireless architecture for exploiting sender diversity. In Proc. of ACM SIGCOMM.
    [46]
    Hamid Shafiee, Behzad Nourani, and M Khoshgard. 2004. Estimation and compensation of frequency offset in DAC/ADC clocks in OFDM systems. In Proc. of IEEE ICC.
    [47]
    Michael Speth, Stefan A Fechtel, Gunnar Fock, and Heinrich Meyr. 1999. Optimum receiver design for wireless broad-band systems using OFDM. I. IEEE Transactions on Communications 47, 11 (1999), 1668--1677.
    [48]
    V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gollakota. 2017. Lora backscatter: Enabling the vision of ubiquitous connectivity. In Proc. of ACM IMWUT.
    [49]
    V. Talla, B. Kellogg, B. Ransford, S. Naderiparizi, S. Gollakota, and J. R. Smith. 2015. Powering the next billion devices with Wi-Fi. In Proc. of ACM CONEXT.
    [50]
    J. K. Tan. 2006. An adaptive orthogonal frequency division multiplexing baseband modem for wideband wireless channels. Ph.D. Dissertation.
    [51]
    Stewart J Thomas, Eric Wheeler, Jochen Teizer, and Matthew S Reynolds. 2012. Quadrature amplitude modulated backscatter in passive and semipassive UHF RFID systems. IEEE Transactions on Microwave Theory and Techniques 60, 4 (2012), 1175--1182.
    [52]
    D. Tse and P. Viswanath. 2005. Fundamentals of wireless communication. Cambridge university press.
    [53]
    D. Vasisht, S. Kumar, and D. Katabi. 2016. Decimeter-level localization with a single WiFi access point. In Proc. of USENIX NSDI.
    [54]
    J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. 2012. Efficient and reliable low-power backscatter networks. In Proc. of ACM SIGCOMM.
    [55]
    Q. Wang, S. Chen, J. Zhao, and W. Gong. 2021. RapidRider: Efficient WiFi Backscatter with Uncontrolled Ambient Signals. In Proc. of IEEE INFOCOM.
    [56]
    C.-Y. Wu, N. Singhal, and P. Krahenbuhl. 2018. Video compression through image interpolation. In Proc. of ECCV RFID.
    [57]
    M. Zhang, S. Chen, J. Zhao, and W. Gong. 2021. Commodity-level BLE backscatter. In Proc. of ACM MobiSys.
    [58]
    P. Zhang, D. Bharadia, K. Joshi, and S. Katti. 2016. Hitchhike: Practical backscatter using commodity wifi. In Proc. of ACM SenSys.
    [59]
    P. Zhang, C. Josephson, D. Bharadia, and S. Katti. 2017. Freerider: Backscatter communication using commodity radios. In Proc. of ACM CONEXT.
    [60]
    P. Zhang, M. Rostami, P. Hu, and D. Ganesan. 2016. Enabling practical backscatter communication for on-body sensors. In Proc. of ACM SIGCOMM.
    [61]
    J. Zhao, W. Gong, and J. Liu. 2018. Spatial Stream Backscatter Using Commodity WiFi. In Proc. of ACM MobiSys.
    [62]
    J. Zhao, W. Gong, and J. Liu. 2018. X-tandem: Towards multi-hop backscatter communication with commodity wifi. In Proc. of ACM MobiCom.
    [63]
    J. Zhao, W. Gong, and J. Liu. 2020. Towards scalable backscatter sensor mesh with decodable relay and distributed excitation. In Proc. of ACM MobiSys.
    [64]
    J. Zhao, W. Gong, and J. Liu. 2021. Microphone array backscatter: an application-driven design for lightweight spatial sound recording over the air. In Proc. of ACM MobiCom.

    Cited By

    View all
    • (2024)MultiRider: Enabling Multi-Tag Concurrent OFDM Backscatter by Taming In-band InterferenceProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661862(292-303)Online publication date: 3-Jun-2024
    • (2024)ECRLoRa: LoRa Packet Recovery under Low SNR via Edge–Cloud CollaborationACM Transactions on Sensor Networks10.1145/360493620:2(1-25)Online publication date: 9-Jan-2024
    • (2024)Concurrent Backscatter for Smart LogisticsPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_5(77-97)Online publication date: 21-Apr-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MobiSys '22: Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services
    June 2022
    668 pages
    ISBN:9781450391856
    DOI:10.1145/3498361
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 June 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. OFDM
    2. backscatter
    3. internet of things

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    MobiSys '22

    Acceptance Rates

    Overall Acceptance Rate 274 of 1,679 submissions, 16%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)171
    • Downloads (Last 6 weeks)23
    Reflects downloads up to 30 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)MultiRider: Enabling Multi-Tag Concurrent OFDM Backscatter by Taming In-band InterferenceProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661862(292-303)Online publication date: 3-Jun-2024
    • (2024)ECRLoRa: LoRa Packet Recovery under Low SNR via Edge–Cloud CollaborationACM Transactions on Sensor Networks10.1145/360493620:2(1-25)Online publication date: 9-Jan-2024
    • (2024)Concurrent Backscatter for Smart LogisticsPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_5(77-97)Online publication date: 21-Apr-2024
    • (2024)Cross-Technology Backscatter for Smart Health MonitoringPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_4(59-75)Online publication date: 21-Apr-2024
    • (2024)Spectrum-Efficient Backscatter for Smart HomesPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_3(37-58)Online publication date: 21-Apr-2024
    • (2024)Reliable Backscatter for Remote Physical Condition MonitoringPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_2(15-36)Online publication date: 21-Apr-2024
    • (2024)IntroductionPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_1(1-14)Online publication date: 21-Apr-2024
    • (2023)Dances with Blues: Harnessing Multi-Frequency Carriers for Commodity Bluetooth BackscatterProceedings of the ACM on Networking10.1145/36291331:CoNEXT3(1-20)Online publication date: 28-Nov-2023
    • (2023)Interference-Aware Mobile Backscatter Communication: A PHY-Assisted Rate Adaptive ApproachIEEE Transactions on Mobile Computing10.1109/TMC.2022.321453322:12(7498-7508)Online publication date: 3-Nov-2023
    • (2023)Ortho-CodeA: Orthogonal Codes Assisted Backscatter Multiple Access2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)10.1109/PERCOM56429.2023.10099216(171-179)Online publication date: 13-Mar-2023
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media