Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3514221.3517876acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

GaccO - A GPU-accelerated OLTP DBMS

Published: 11 June 2022 Publication History

Abstract

In this paper, we present GaccO - a main memory DBMS for GPU-accelerated OLTP. For executing OLTP workloads, GaccO implements a novel scheme that splits the execution across the CPU and the GPU. Using such a co-execution scheme GaccO can thus not only efficiently make use of the vectorized execution of the GPU by grouping transactions of the same type into batches, but it can also support databases larger than device memory by leveraging CPU memory in addition to the GPU memory. In our evaluation with TPC-C, we show that GaccO can thus speed-up OLTP workloads by up to 6 times compared to a pure CPU-based OLTP execution.

References

[1]
Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. 2015. GPU Concurrency: Weak Behaviours and Programming Assumptions. In ASPLOS. ACM, 577--591. https://doi.org/10.1145/2694344.2694391
[2]
Raja Appuswamy, Angelos-Christos G. Anadiotis, Danica Porobic, Mustafa Iman, and Anastasia Ailamaki. 2017. Analyzing the Impact of System Architecture on the Scalability of OLTP Engines for High-Contention Workloads. Proc. VLDB Endow., Vol. 11, 2 (2017), 121--134. https://doi.org/10.14778/3149193.3149194
[3]
Tiemo Bang, Norman May, Ilia Petrov, and Carsten Binnig. 2020. The tale of 1000 Cores: an evaluation of concurrency control on real(ly) large multi-socket hardware. In International Workshop on Data Management on New Hardware. ACM, 3:1--3:9. https://doi.org/10.1145/3399666.3399910
[4]
Sebastian Breß. 2013. Why it is time for a HyPE: A Hybrid Query Processing Engine for Efficient GPU Coprocessing in DBMS. Proc. VLDB Endow., Vol. 6, 12 (2013), 1398--1403. https://doi.org/10.14778/2536274.2536325
[5]
Sebastian Breß, Henning Funke, and Jens Teubner. 2016. Robust Query Processing in Co-Processor-accelerated Databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 1891--1906.
[6]
Sebastian Breß, Max Heimel, Michael Saecker, Bastian Kö cher, Volker Markl, and Gunter Saake. 2014. Ocelot/HyPE: Optimized Data Processing on Heterogeneous Hardware. Proc. VLDB Endow., Vol. 7, 13 (2014), 1609--1612. https://doi.org/10.14778/2733004.2733042
[7]
Michael J. Cahill. 2009. Serializable Isolation for Snapshot Databases. Ph.D. Dissertation. University of Sydney, Australia. http://hdl.handle.net/2123/5353
[8]
Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving Optimistic Concurrency Control Through Transaction Batching and Operation Reordering. Proc. VLDB Endow., Vol. 12, 2 (2018), 169--182. https://doi.org/10.14778/3282495.3282502
[9]
Jose M. Faleiro, Daniel Abadi, and Joseph M. Hellerstein. 2017. High Performance Transactions via Early Write Visibility. Proc. VLDB Endow., Vol. 10, 5 (2017), 613--624. https://doi.org/10.14778/3055540.3055553
[10]
Rui Fang, Bingsheng He, Mian Lu, Ke Yang, Naga K. Govindaraju, Qiong Luo, and Pedro V. Sander. 2007. GPUQP: query co-processing using graphics processors. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 1061--1063.
[11]
Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner. 2018. Pipelined Query Processing in Coprocessor Environments. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 1603--1618.
[12]
Henning Funke and Jens Teubner. 2020. Data-Parallel Query Processing on Non-Uniform Data. Proc. VLDB Endow., Vol. 13, 6 (2020), 884--897. https://doi.org/10.14778/3380750.3380758
[13]
Bingsheng He and Jeffrey Xu Yu. 2011. High-throughput transaction executions on graphics processors. Proc. VLDB Endow., Vol. 4, 5 (2011), 314--325. https://doi.org/10.14778/1952376.1952381
[14]
Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li. 2019. X-Engine: An Optimized Storage Engine for Large-scale E-commerce Transaction Processing. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 651--665.
[15]
Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2020. Opportunities for Optimism in Contended Main-Memory Multicore Transactions. Proc. VLDB Endow., Vol. 13, 5 (2020), 629--642. http://www.vldb.org/pvldb/vol13/p629-huang.pdf
[16]
Jens Krü ger, Changkyu Kim, Martin Grund, Nadathur Satish, David Schwalb, Jatin Chhugani, Hasso Plattner, Pradeep Dubey, and Alexander Zeier. 2011. Fast Updates on Read-Optimized Databases Using Multi-Core CPUs. Proc. VLDB Endow., Vol. 5, 1 (2011), 61--72. https://doi.org/10.14778/2047485.2047491
[17]
Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M. Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mechanisms for Main-Memory Databases. Proc. VLDB Endow., Vol. 5, 4 (2011), 298--309. https://doi.org/10.14778/2095686.2095689
[18]
Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada: Dependably Fast Multi-Core In-Memory Transactions. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 21--35.
[19]
David B. Lomet, Alan D. Fekete, Rui Wang, and Peter Ward. 2012. Multi-version Concurrency via Timestamp Range Conflict Management. In IEEE 28th International Conference on Data Engineering (ICDE 2012). IEEE Computer Society, 714--725. https://doi.org/10.1109/ICDE.2012.10
[20]
Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 1633--1649.
[21]
Neha Narula, Cody Cutler, Eddie Kohler, and Robert Tappan Morris. 2014. Phase Reconciliation for Contended In-Memory Transactions. In 11th USENIX Symposium on Operating Systems Design and Implementation. USENIX Association, 511--524. https://www.usenix.org/conference/osdi14/technical-sessions/presentation/narula
[22]
Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Ailamaki. 2010. Data-Oriented Transaction Execution. Proc. VLDB Endow., Vol. 3, 1 (2010), 928--939. https://doi.org/10.14778/1920841.1920959
[23]
Johns Paul, Bingsheng He, Shengliang Lu, and Chiew Tong Lau. 2020. Improving Execution Efficiency of Just-in-time Compilation based Query Processing on GPUs. Proc. VLDB Endow., Vol. 14, 2 (2020), 202--214. https://doi.org/10.14778/3425879.3425890
[24]
Robin Rehrmann, Carsten Binnig, Alexander Bö hm, Kihong Kim, and Wolfgang Lehner. 2020 a. Sharing Opportunities for OLTP Workloads in Different Isolation Levels. Proc. VLDB Endow., Vol. 13, 10 (2020), 1696--1708. http://www.vldb.org/pvldb/vol13/p1696-rehrmann.pdf
[25]
Robin Rehrmann, Carsten Binnig, Alexander Bö hm, Kihong Kim, Wolfgang Lehner, and Amr Rizk. 2018. OLTPShare: The Case for Sharing in OLTP Workloads. Proc. VLDB Endow., Vol. 11, 12 (2018), 1769--1780. https://doi.org/10.14778/3229863.3229866
[26]
Robin Rehrmann, Martin Keppner, Wolfgang Lehner, Carsten Binnig, and Arne Schwarz. 2020 b. Workload merging potential in SAP Hybris. In DBTest@SIGMOD. ACM, 7:1--7:6.
[27]
Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich. 2019. Blurring the Lines between Blockchains and Database Systems: the Case of Hyperledger Fabric. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 105--122.
[28]
Panagiotis Sioulas, Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia Ailamaki. 2019. Hardware-Conscious Hash-Joins on GPUs. In 35th IEEE International Conference on Data Engineering. IEEE, 698--709. https://doi.org/10.1109/ICDE.2019.00068
[29]
Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel J. Abadi. 2012. Calvin: fast distributed transactions for partitioned database systems. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 1--12.
[30]
Tianzheng Wang and Hideaki Kimura. 2016. Mostly-Optimistic Concurrency Control for Highly Contended Dynamic Workloads on a Thousand Cores. Proc. VLDB Endow., Vol. 10, 2 (2016), 49--60. https://doi.org/10.14778/3015274.3015276
[31]
William E. Weihl. 1988. Commutativity-Based Concurrency Control for Abstract Data Types. IEEE Trans. Computers, Vol. 37, 12 (1988), 1488--1505. https://doi.org/10.1109/12.9728
[32]
Gerhard Weikum. 1991. Principles and Realization Strategies of Multilevel Transaction Management. ACM Trans. Database Syst., Vol. 16, 1 (1991), 132--180. https://doi.org/10.1145/103140.103145
[33]
Haicheng Wu, Gregory F. Diamos, Tim Sheard, Molham Aref, Sean Baxter, Michael Garland, and Sudhakar Yalamanchili. 2014. Red Fox: An Execution Environment for Relational Query Processing on GPUs. In 12th Annual IEEE/ACM International Symposium on Code Generation and Optimization. ACM, 44. https://dl.acm.org/citation.cfm?id=2544166
[34]
Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control with One Thousand Cores. Proc. VLDB Endow., Vol. 8, 3 (2014), 209--220. https://doi.org/10.14778/2735508.2735511
[35]
Xiangyao Yu, Andrew Pavlo, Daniel Sá nchez, and Srinivas Devadas. 2016. TicToc: Time Traveling Optimistic Concurrency Control. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 1629--1642.
[36]
Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of Processing Data Warehousing Queries on GPU Devices. Proc. VLDB Endow., Vol. 6, 10 (2013), 817--828. https://doi.org/10.14778/2536206.2536210
[37]
Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim Harris. 2017. The End of a Myth: Distributed Transaction Can Scale. Proc. VLDB Endow., Vol. 10, 6 (2017), 685--696. https://doi.org/10.14778/3055330.3055335
[38]
Shuhao Zhang, Jiong He, Bingsheng He, and Mian Lu. 2013. OmniDB: Towards Portable and Efficient Query Processing on Parallel CPU/GPU Architectures. Proc. VLDB Endow., Vol. 6, 12 (2013), 1374--1377. https://doi.org/10.14778/2536274.2536319

Cited By

View all
  • (2024)Workload Placement on Heterogeneous CPU-GPU SystemsProceedings of the VLDB Endowment10.14778/3685800.368584517:12(4241-4244)Online publication date: 8-Nov-2024
  • (2024)nsDB: Architecting the Next Generation Database by Integrating Neural and Symbolic SystemsProceedings of the VLDB Endowment10.14778/3681954.368200017:11(3283-3289)Online publication date: 30-Aug-2024
  • (2024)Accelerating Merkle Patricia Trie with GPUProceedings of the VLDB Endowment10.14778/3659437.365944317:8(1856-1869)Online publication date: 31-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '22: Proceedings of the 2022 International Conference on Management of Data
June 2022
2597 pages
ISBN:9781450392495
DOI:10.1145/3514221
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 June 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. GPU acceleration
  2. OLTP
  3. transaction processing

Qualifiers

  • Research-article

Funding Sources

Conference

SIGMOD/PODS '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)175
  • Downloads (Last 6 weeks)24
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Workload Placement on Heterogeneous CPU-GPU SystemsProceedings of the VLDB Endowment10.14778/3685800.368584517:12(4241-4244)Online publication date: 8-Nov-2024
  • (2024)nsDB: Architecting the Next Generation Database by Integrating Neural and Symbolic SystemsProceedings of the VLDB Endowment10.14778/3681954.368200017:11(3283-3289)Online publication date: 30-Aug-2024
  • (2024)Accelerating Merkle Patricia Trie with GPUProceedings of the VLDB Endowment10.14778/3659437.365944317:8(1856-1869)Online publication date: 31-May-2024
  • (2024)BOSS - An Architecture for Database Kernel CompositionProceedings of the VLDB Endowment10.14778/3636218.363623917:4(877-890)Online publication date: 5-Mar-2024
  • (2024)How Does Software Prefetching Work on GPU Query Processing?Proceedings of the 20th International Workshop on Data Management on New Hardware10.1145/3662010.3663445(1-9)Online publication date: 10-Jun-2024
  • (2024)HTAP Databases: A SurveyIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.338969336:11(6410-6429)Online publication date: Nov-2024
  • (2024)LTPG: Large-Batch Transaction Processing on GPUs with Deterministic Concurrency Control2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00296(3865-3877)Online publication date: 13-May-2024
  • (2023)GPU Database Systems Characterization and OptimizationProceedings of the VLDB Endowment10.14778/3632093.363210717:3(441-454)Online publication date: 1-Nov-2023
  • (2023)RTIndeX: Exploiting Hardware-Accelerated GPU Raytracing for Database IndexingProceedings of the VLDB Endowment10.14778/3625054.362506316:13(4268-4281)Online publication date: 1-Sep-2023
  • (2023)EdgeNN: Efficient Neural Network Inference for CPU-GPU Integrated Edge Devices2023 IEEE 39th International Conference on Data Engineering (ICDE)10.1109/ICDE55515.2023.00096(1193-1207)Online publication date: Apr-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media