Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3517804.3524149acmconferencesArticle/Chapter ViewAbstractPublication PagespodsConference Proceedingsconference-collections
research-article

The Complexity of Regular Trail and Simple Path Queries on Undirected Graphs

Published: 13 June 2022 Publication History

Abstract

We study the data complexity of regular trail and simple path queries on undirected graphs. Using techniques from structural graph theory, ranging from the graph minor theorem to group-labeled graphs, we are able to identify several tractable and intractable subclasses of the regular languages. In particular, we establish that trail evaluation for simple chain regular expressions, which are common in practice, is tractable, whereas simple path evaluation is tractable for a large subclass. The problem of fully classifying all regular languages is quite non-trivial, even on undirected graphs, since it subsumes an intriguing problem that has been open for 30 years.

Supplementary Material

MP4 File (PODS22-fp27.mp4)
We study the data complexity of regular trail and simple path queries on undirected graphs. Using techniques from structural graph theory, ranging from the graph minor theorem to group-labeled graphs, we are able to identify several tractable and intractable subclasses of the regular languages.

References

[1]
Abdelfattah Abouelaoualim, Kinkar Chandra Das, Lué rbio Faria, Yannis Manoussakis, Carlos A. J. Martinhon, and Rachid Saad. 2008. Paths and trails in edge-colored graphs. Theor. Comput. Sci., Vol. 409, 3 (2008), 497--510.
[2]
Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L. Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for Future Graph Query Languages. In International Conference on Management of Data (SIGMOD). 1421--1432.
[3]
Marcelo Arenas, Sebastián Conca, and Jorge Pérez. 2012. Counting Beyond a Yottabyte, or How SPARQL 1.1 Property Paths Will Prevent Adoption of the Standard. In International Conference on World Wide Web (WWW). 629--638.
[4]
Esther M. Arkin, Christos H. Papadimitriou, and Mihalis Yannakakis. 1991. Modularity of Cycles and Paths in Graphs. J. ACM, Vol. 38, 2 (1991), 255--274.
[5]
Guillaume Bagan, Angela Bonifati, and Benoit Groz. 2013. A Trichotomy for Regular Simple Path Queries on Graphs. In Symposium on Principles of Database Systems (PODS). 261--272.
[6]
Guillaume Bagan, Angela Bonifati, and Benoit Groz. 2020. A trichotomy for regular simple path queries on graphs. J. Comput. Syst. Sci., Vol. 108 (2020), 29--48.
[7]
Pablo Barceló. 2013. Querying graph databases. In Symposium on Principles of Database Systems (PODS). 175--188.
[8]
Pablo Barceló, Diego Figueira, and Miguel Romero. 2019. Boundedness of Conjunctive Regular Path Queries. In International Colloquium on Automata, Languages, and Programming (ICALP) (LIPIcs, Vol. 132). 104:1--104:15.
[9]
Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. 2012. Expressive Languages for Path Queries over Graph-Structured Data. ACM Trans. Database Syst., Vol. 37, 4 (2012), 31:1--31:46.
[10]
Pablo Barceló, Leonid Libkin, and Juan L. Reutter. 2014. Querying Regular Graph Patterns. J. ACM, Vol. 61, 1 (2014), 8:1--8:54.
[11]
Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. 2015. Regular Path Queries in Lightweight Description Logics: Complexity and Algorithms. J. Artif. Intell. Res., Vol. 53 (2015), 315--374.
[12]
Meghyn Bienvenu and Michaël Thomazo. 2016. On the Complexity of Evaluating Regular Path Queries over Linear Existential Rules. In RR (Lecture Notes in Computer Science, Vol. 9898). Springer, 1--17.
[13]
Andreas Björklund and Thore Husfeldt. 2019. Shortest Two Disjoint Paths in Polynomial Time. SIAM J. Comput., Vol. 48, 6 (2019), 1698--1710.
[14]
Angela Bonifati, Wim Martens, and Thomas Tim. 2019. Navigating the Maze of Wikidata Query Logs. In The Web Conference (WWW). ACM. To appear.
[15]
Angela Bonifati, Wim Martens, and Thomas Timm. 2017. An Analytical Study of Large SPARQL Query Logs. Proceedings of the VLDB Endowment (PVLDB), Vol. 11, 2 (2017), 149--161.
[16]
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2000 a. Containment of Conjunctive Regular Path Queries with Inverse. In KR. Morgan Kaufmann, 176--185.
[17]
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2000 b. View-Based Query Processing for Regular Path Queries with Inverse. In Symposium on Principles of Database Systems (PODS). ACM, 58--66.
[18]
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2002. Rewriting of Regular Expressions and Regular Path Queries. J. Comput. Syst. Sci., Vol. 64, 3 (2002), 443--465.
[19]
Katrin Casel and Markus L. Schmid. 2021. Fine-Grained Complexity of Regular Path Queries. In ICDT (LIPIcs, Vol. 186). Schloss Dagstuhl - Leibniz-Zentrum fü r Informatik, 19:1--19:20.
[20]
W. S. Chou, Y. Manoussakis, O. Megalakaki, M. Spyratos, and Zs. Tuza. 1994. Paths through fixed vertices in edge-colored graphs. Mathématiques et Sciences humaines, Vol. 127 (1994), 49--58. http://www.numdam.org/item/MSH_1994__127__49_0/
[21]
Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. 1987. A Graphical Query Language Supporting Recursion. In ACM SIGMOD International Conference on Management of Data (SIGMOD). 323--330.
[22]
Andreas Darmann and Janosch Döcker. 2021. On simplified NP-complete variants of Monotone 3-Sat. Discrete Applied Mathematics, Vol. 292 (03 2021), 45--58.
[23]
Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak, Stefan Plantikow, Petra Selmer, Hannes Voigt, Oskar van Rest, Domagoj Vrgoc, Mingxi Wu, and Fred Zemke. 2021. Graph Pattern Matching in GQL and SQL/PGQ. arxiv: 2112.06217 [cs.DB]
[24]
Alin Deutsch and Val Tannen. 2001. Optimization Properties for Classes of Conjunctive Regular Path Queries. In DBPL (Lecture Notes in Computer Science, Vol. 2397). Springer, 21--39.
[25]
Tali Eilam-Tzoreff. 1998. The Disjoint Shortest Paths Problem. Discret. Appl. Math., Vol. 85, 2 (1998), 113--138.
[26]
Trevor I. Fenner, Oded Lachish, and Alexandru Popa. 2016. Min-Sum 2-Paths Problems. Theory Comput. Syst., Vol. 58, 1 (2016), 94--110.
[27]
Diego Figueira, Adwait Godbole, Shankara Narayanan Krishna, Wim Martens, Matthias Niewerth, and Tina Trautner. 2020. Containment of Simple Conjunctive Regular Path Queries. In KR. 371--380.
[28]
Daniela Florescu, Alon Y. Levy, and Dan Suciu. 1998. Query Containment for Conjunctive Queries with Regular Expressions. In PODS. ACM Press, 139--148.
[29]
Steven Fortune, John Hopcroft, and James Wyllie. 1980. The directed subgraph homeomorphism problem. Theoretical Computer Science (TCS), Vol. 10, 2 (1980), 111--121.
[30]
Nadime Francis, Luc Segoufin, and Cristina Sirangelo. 2014. Datalog Rewritings of Regular Path Queries using Views. In International Conference on Database Theory (ICDT). OpenProceedings.org, 107--118.
[31]
Laurent Gourvè s, Adria Ramos de Lyra, Carlos A. J. Martinhon, and Jérôme Monnot. 2012. On paths, trails and closed trails in edge-colored graphs. Discret. Math. Theor. Comput. Sci., Vol. 14, 2 (2012), 57--74.
[32]
Tony Huynh. 2009. The Linkage Problem for Group-labelled Graphs. IEEE Expert / IEEE Intelligent Systems - EXPERT (01 2009).
[33]
Ken-ichi Kawarabayashi and Yusuke Kobayashi. 2016. Edge-disjoint odd cycles in 4-edge-connected graphs. J. Comb. Theory, Ser. B, Vol. 119 (2016), 12--27.
[34]
Ken-ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. 2011. The Graph Minor Algorithm with Parity Conditions. In FOCS. IEEE Computer Society, 27--36.
[35]
Yusuke Kobayashi and Christian Sommer. 2010. On shortest disjoint paths in planar graphs. Discret. Optim., Vol. 7, 4 (2010), 234--245.
[36]
Andrea S. LaPaugh and Christos H. Papadimitriou. 1984. The even-path problem for graphs and digraphs. Networks, Vol. 14, 4 (1984), 507--513.
[37]
Leonid Libkin, Wim Martens, and Domagoj Vrgoc. 2013. Querying graph databases with XPath. In International Conference on Database Theory (ICDT). 129--140.
[38]
Leonid Libkin, Wim Martens, and Domagoj Vrgovc. 2016. Querying Graphs with Data. Journal of the ACM, Vol. 63, 2 (2016), 14:1--14:53.
[39]
Katja Losemann and Wim Martens. 2013. The complexity of regular expressions and property paths in SPARQL. ACM Transactions on Database Systems, Vol. 38, 4 (2013), 24:1--24:39.
[40]
Yannis Manoussakis. 1995. Alternating Paths in Edge-colored Complete Graphs. Discret. Appl. Math., Vol. 56, 2--3 (1995), 297--309.
[41]
Wim Martens, Frank Neven, and Thomas Schwentick. 2009. Complexity of Decision Problems for XML Schemas and Chain Regular Expressions. SIAM J. Comput., Vol. 39, 4 (2009), 1486--1530.
[42]
Wim Martens, Matthias Niewerth, and Tina Trautner. 2020. A Trichotomy for Regular Trail Queries. In STACS (LIPIcs, Vol. 154). Schloss Dagstuhl - Leibniz-Zentrum fü r Informatik, 7:1--7:16.
[43]
Wim Martens and Tina Trautner. 2019. Dichotomies for Evaluating Simple Regular Path Queries. ACM Trans. Database Syst., Vol. 44, 4 (2019), 16:1--16:46.
[44]
Alberto O. Mendelzon and Peter T. Wood. 1995. Finding Regular Simple Paths in Graph Databases. SIAM J. Comput., Vol. 24, 6 (12 1995), 1235--1258.
[45]
Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. 2015. Regular Queries on Graph Databases. In International Conference on Database Theory (ICDT). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 177--194.
[46]
Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. 2017. Regular Queries on Graph Databases. Theory Comput. Syst., Vol. 61, 1 (2017), 31--83.
[47]
Neil Robertson and Paul D. Seymour. 1995. Graph Minors .XIII. The Disjoint Paths Problem. J. Comb. Theory, Ser. B, Vol. 63, 1 (1995), 65--110.
[48]
Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar, Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz, Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan Plantikow, Mohamed Ragab, Matei R. Ripeanu, Semih Salihoglu, Christian Schulz, Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tommasini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2020. The Future is Big Graphs! A Community View on Graph Processing Systems. arXiv:2012.06171 (2020).
[49]
J. W. Suurballe. 1974. Disjoint paths in a network. Networks, Vol. 4, 2 (1974), 125--145.
[50]
Stefan Szeider. 2003. Finding paths in graphs avoiding forbidden transitions. Discrete Applied Mathematics, Vol. 126, 2--3 (2003), 261--273.
[51]
Tigergraph. 2021. GSQL Language Reference. https://docs.tigergraph.com/v/2.3/dev/gsql-ref .
[52]
Jin Y. Yen. 1971. Finding the K Shortest Loopless Paths in a Network. Management Science, Vol. 17, 11 (1971), 712--716.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
PODS '22: Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
June 2022
462 pages
ISBN:9781450392600
DOI:10.1145/3517804
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 June 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. complexity
  2. enumeration
  3. graph databases
  4. regular languages
  5. regular path queries
  6. undirected graphs

Qualifiers

  • Research-article

Funding Sources

Conference

SIGMOD/PODS '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 642 of 2,707 submissions, 24%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 140
    Total Downloads
  • Downloads (Last 12 months)29
  • Downloads (Last 6 weeks)2
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media