Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3546790.3546799acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiconsConference Proceedingsconference-collections
research-article
Open access

Design and implementation of a parsimonious neuromorphic PID for onboard altitude control for MAVs using neuromorphic processors

Published: 07 September 2022 Publication History

Abstract

The great promises of neuromorphic sensing and processing for robotics have led researchers and engineers to investigate novel models for robust and reliable control of autonomous robots (navigation, obstacle detection and avoidance, etc.), especially for quadrotors in challenging contexts such as drone racing and aggressive maneuvers. Using spiking neural networks, these models can be run on neuromorphic hardware to benefit from outstanding update rates and high energy efficiency. Yet, low-level controllers are often neglected and remain outside of the neuromorphic loop. Designing low-level neuromorphic controllers is crucial to remove the standard PID, and therefore benefit from all the advantages of closing the neuromorphic loop. In this paper, we propose a parsimonious and adjustable neuromorphic PID controller, endowed with a minimal number of 93 neurons sparsely connected to achieve autonomous, onboard altitude control of a quadrotor equipped with Intel’s Loihi neuromorphic chip. We successfully demonstrate the robustness of our proposed network in a set of experiments where the quadrotor is requested to reach a target altitude from take-off. Our results confirm the suitability of such low-level neuromorphic controllers, ultimately with a very high update frequency.

References

[1]
Karl J Åström and Björn Wittenmark. 2013. Computer-controlled systems: theory and design. Courier Corporation.
[2]
Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand R Chandrasekaran, Jean-Marie Bussat, Rodrigo Alvarez-Icaza, John V Arthur, Paul A Merolla, and Kwabena Boahen. 2014. Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102, 5 (2014), 699–716.
[3]
Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, 2018. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 1 (2018), 82–99.
[4]
Travis Dewolf, Terrence Stewart, Jean-Jacques Slotine, and Chris Eliasmith. 2016. A spiking neural model of adaptive arm control. Proceedings of the Royal Society of London B: Biological Sciences 283 (11 2016). https://doi.org/10.1098/rspb.2016.2134
[5]
Julien Dupeyroux, Jesse J Hagenaars, Federico Paredes-Vallés, and Guido CHE de Croon. 2021. Neuromorphic control for optic-flow-based landing of MAVs using the Loihi processor. In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 96–102.
[6]
Dario Floreano and Robert J Wood. 2015. Science, technology and the future of small autonomous drones. Nature 521, 7553 (2015), 460–466.
[7]
Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. 2014. The spinnaker project. Proc. IEEE 102, 5 (2014), 652–665.
[8]
Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. 2016. Robot Operating System (ROS): The Complete Reference (Volume 1). Springer International Publishing, Cham, Chapter RotorS - A Modular Gazebo MAV Simulator Framework, 595–625. https://doi.org/10.1007/978-3-319-26054-9_23
[9]
Samanwoy Ghosh-Dastidar and Hojjat Adeli. 2009. Spiking neural networks. International journal of neural systems 19, 04 (2009), 295–308.
[10]
Angel Jimenez-Fernandez, Gabriel Jimenez-Moreno, Alejandro Linares-Barranco, Manuel J. Dominguez-Morales, Rafael Paz-Vicente, and Anton Civit-Balcells. 2012. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs. Sensors 12, 4 (2012), 3831–3856. https://doi.org/10.3390/s120403831
[11]
Sunggoo Jung, Sunyou Hwang, Heemin Shin, and David Hyunchul Shim. 2018. Perception, guidance, and navigation for indoor autonomous drone racing using deep learning. IEEE Robotics and Automation Letters 3, 3 (2018), 2539–2544.
[12]
Elia Kaufmann, Mathias Gehrig, Philipp Foehn, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and Davide Scaramuzza. 2019. Beauty and the beast: Optimal methods meet learning for drone racing. In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 690–696.
[13]
Chit-Kwan Lin, Andreas Wild, Gautham N Chinya, Yongqiang Cao, Mike Davies, Daniel M Lavery, and Hong Wang. 2018. Programming spiking neural networks on Intel’s Loihi. Computer 51, 3 (2018), 52–61.
[14]
Mark Lundstrom. 2003. Moore’s law forever?Science 299, 5604 (2003), 210–211.
[15]
S Lynen, M Achtelik, S Weiss, M Chli, and R Siegwart. 2013. A Robust and Modular Multi-Sensor Fusion Approach Applied to MAV Navigation. In Proc. of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
[16]
Misha Mahowald and Rodney Douglas. 1991. A silicon neuron. Nature 354, 6354 (1991), 515–518.
[17]
Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, 2014. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 6197 (2014), 668–673.
[18]
Martin Müller and Rüdiger Wehner. 1988. Path integration in desert ants, Cataglyphis fortis. Proceedings of the National Academy of Sciences 85, 14 (1988), 5287–5290.
[19]
Fernando Perez-Peña, Arturo Morgado-Estevez, Alejandro Linares-Barranco, Angel Jimenez-Fernandez, Francisco Gomez-Rodriguez, Gabriel Jimenez-Moreno, and Juan Lopez-Coronado. 2013. Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control through Spike-VITE. Sensors 13, 11 (2013), 15805–15832. https://doi.org/10.3390/s131115805
[20]
Johannes Schemmel, Daniel Brüderle, Andreas Grübl, Matthias Hock, Karlheinz Meier, and Sebastian Millner. 2010. A wafer-scale neuromorphic hardware system for large-scale neural modeling. In 2010 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1947–1950.
[21]
Rasmus Stagsted, Antonio Vitale, Jonas Binz, Leon Bonde Larsen, Yulia Sandamirskaya, 2020. Towards neuromorphic control: A spiking neural network based PID controller for UAV. RSS.
[22]
Thomas N Theis and H-S Philip Wong. 2017. The end of moore’s law: A new beginning for information technology. Computing in Science & Engineering 19, 2 (2017), 41–50.
[23]
Antonio Vitale, Alpha Renner, Celine Nauer, Davide Scaramuzza, and Yulia Sandamirskaya. 2021. Event-driven vision and control for UAVs on a neuromorphic chip. In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 103–109.
[24]
Yuval Zaidel, Albert Shalumov, Alex Volinski, Lazar Supic, and Elishai Ezra Tsur. 2021. Neuromorphic NEF-based inverse kinematics and PID control. Frontiers in neurorobotics(2021), 2.
[25]
Zhihao Zheng, J Scott Lauritzen, Eric Perlman, Camenzind G Robinson, Matthew Nichols, Daniel Milkie, Omar Torrens, John Price, Corey B Fisher, Nadiya Sharifi, 2018. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 3 (2018), 730–743.

Cited By

View all
  • (2024)Fully neuromorphic vision and control for autonomous drone flightScience Robotics10.1126/scirobotics.adi05919:90Online publication date: 15-May-2024
  • (2024)Integrating a hippocampus memory model into a neuromorphic robotic-arm for trajectory navigation2024 IEEE International Symposium on Circuits and Systems (ISCAS)10.1109/ISCAS58744.2024.10558362(1-5)Online publication date: 19-May-2024
  • (2023)Towards neuromorphic FPGA-based infrastructures for a robotic armAutonomous Robots10.1007/s10514-023-10111-x47:7(947-961)Online publication date: 14-Jul-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICONS '22: Proceedings of the International Conference on Neuromorphic Systems 2022
July 2022
213 pages
ISBN:9781450397896
DOI:10.1145/3546790
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 September 2022

Check for updates

Author Tags

  1. Micro-Air-Vehicles (MAVs)
  2. Neuromorphic control
  3. Neuromorphic processors
  4. Spiking Neural Networks (SNNs)

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • AFOSR

Conference

ICONS

Acceptance Rates

Overall Acceptance Rate 13 of 22 submissions, 59%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)194
  • Downloads (Last 6 weeks)27
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Fully neuromorphic vision and control for autonomous drone flightScience Robotics10.1126/scirobotics.adi05919:90Online publication date: 15-May-2024
  • (2024)Integrating a hippocampus memory model into a neuromorphic robotic-arm for trajectory navigation2024 IEEE International Symposium on Circuits and Systems (ISCAS)10.1109/ISCAS58744.2024.10558362(1-5)Online publication date: 19-May-2024
  • (2023)Towards neuromorphic FPGA-based infrastructures for a robotic armAutonomous Robots10.1007/s10514-023-10111-x47:7(947-961)Online publication date: 14-Jul-2023

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media