Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Logics for Temporal Information Systems in Rough Set Theory

Published: 20 January 2023 Publication History

Abstract

The article discusses temporal information systems (TISs) that add the dimension of time to complete or incomplete information systems. Through TISs, one can accommodate the possibility of domains or attribute values for objects changing with time or the availability of currently missing information with time. Different patterns of flow of information give different TISs. The corresponding logics with sound and complete axiomatization are presented.

References

[1]
P. Balbiani and E. Orłowska. 1999. A hierarchy of modal logics with relative accessibility relations. Journal of Applied Non-Classical Logics 9(2–3) (1999), 303–328.
[2]
M. Banerjee, S. Ju, M. A. Khan, and L. Tang. 2015. Open world models: A view from rough set theory. In International Conference on Facets of Uncertainties and Applications (ICFUA’13), Kolkata, India, M. K. Chakraborty, A. Skowron, M. Maiti, and S. Kar (Eds.). Springer-Verlag, 77–86.
[3]
M. Banerjee and M. A. Khan. 2007. Propositional logics from rough set theory. Transactions on Rough Sets VI, LNCS 4374 (2007), 1–25.
[4]
M. Banerjee and M. A. Khan. 2008. Rough set theory: A temporal logic view. In Studies in Logic, Vol. 15, Proc. Logic, Navya-Nyāya and Applications: Homage to Bimal Krishna Matilal, January 2007, Kolkata, India, M. K. Chakraborty, B. Löwe, M. N. Mitra, and S. Sarukkai (Eds.). College Publications, London, 1–20.
[5]
B. Bennett, C. Dixon, M. Fisher, U. Hustadt, E. Franconi, and M. de Rijke. 2002. Combinations of modal logics. Artificial Intelligence Review 17(1) (2002), 1–20.
[6]
P. Blackburn, M. de Rijke, and Y. Venema. 2001. Modal Logic. Cambridge University Press.
[7]
G. Bonanno. 2007. Axiomatic characterization of the AGM theory of belief revision in a temporal logic. Artificial Intelligence 171 (2007), 144–160.
[8]
I. Düntsch, G. Gediga, and E. Orłowska. 2007. Relational attribute systems II: Reasoning with relations in information structures. Transactions on Rough Sets VII, LNCS 4400 (2007), 16–35.
[9]
S. Demri and E. Orłowska. 2002. Incomplete Information: Structure, Inference, Complexity. Springer.
[10]
C. Dixon and M. Fisher. 2003. Tableaux for temporal logics of knowledge: Synchronous systems of perfect recall or no learning. In Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and the 4th International Conference on Temporal Logic (TIME-ICTL’03). IEEE, 62–71.
[11]
T. F. Fan, W. C. Hu, and C. J. Liau. 2001. Decision logics for knowledge representation in data mining. In Proceedings of the 25th International Computer Software and Applications Conference on Invigorating Software Development (COMPSAC’01). IEEE, Washington, DC, 626.
[12]
T. F. Fan, D. R. Liu, and G. H. Tzeng. 2005. Arrow decision logic. In Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’05),LNAI, D. Ślȩzak, G. Wang, M. Szczuka, I. Düntsch, and Y. Yao (Eds.), Vol. 3641. Springer Verlag, 651–659.
[13]
M. Finger and D. M. Gabbay. 1992. Adding a temporal dimension to a logic system. Journal of Logic, Language and Information 1 (1992), 203–233.
[14]
D. M. Gabbay and V. B. Shehtman. 1998. Product of modal logics, Part 1. Logic J. of the IGPL 6(1) (1998), 73–146.
[15]
J. Y. Halpern, R. van der Meyden, and M. Y. Vardi. 2004. Complete axiomatizations for reasoning about knowledge and time. SIAM J. Comput. 33(3) (2004), 674–703.
[16]
S. Ju and H. Liu. 2003. The logical structure of open sets. In Logic and Cognition: The Progress in Logical Study in China, S. Ju (Ed.). Social Sciences in China Press, Beijing, 596–603.
[17]
M. A. Khan. 2015. A modal logic for non-deterministic information systems. In 6th Indian Conference on Logic and its Applications, India (ICLA’15),LNCS, M. Banerjee and Shankara Narayanan Krishna (Eds.), Vol. 8923. Springer-Verlag, 119–131.
[18]
M. A. Khan. 2017. A probabilistic approach to rough set theory with modal logic perspective. Information Sciences 406-407 (Sep2017), 170–184. DOI:
[19]
M. A. Khan and M. Banerjee. 2009. A logic for complete information systems. In The 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’09), Verona, Italy,LNAI, C. Sossai and G. Chemello (Eds.), Vol. 5590. Springer-Verlag, 829–840.
[20]
M. A. Khan and M. Banerjee. 2011. Logics for information systems and their dynamic extensions. ACM Transactions on Computational Logic 12, 4 (2011), 29.
[21]
M. A. Khan and M. Banerjee. 2015. Logics for some dynamic spaces—I. Journal of Logic and Computation 25 (2015), 827–856.
[22]
M. A. Khan and M. Banerjee. 2015. Logics for some dynamic spaces—II. Journal of Logic and Computation 25, 3 (2015), 857–878.
[23]
M. A. Khan, M. Banerjee, and R. Rieke. 2014. An update logic for information systems. International Journal of Approximate Reasoning 55 (2014), 436–456.
[24]
M. A. Khan and V. S. Patel. 2020. Knowledge and approximations: A formal study under the perspective of information systems and rough set theory. Information Sciences 524 (Jul2020), 97–115. DOI:
[25]
M. Kryszkiewicz. 1998. Rough set approach to incomplete information systems. Information Sciences 112 (1998), 39–49.
[26]
M. Kryszkiewicz. 1999. Rules in incomplete information systems. Information Sciences 113 (1999), 271–292.
[27]
R. Ladner and J. Reif. 1986. The logic of distributed protocols. In Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, J. Y. Halpern (Ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, 207–222.
[28]
D. J. Lehmann. 1984. Knowledge, common knowledge and related puzzles (extended summary). In Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed Computing (PODC’84). ACM, New York, NY, 62–67.
[29]
E. Orłowska. 1982. Dynamic information system. Fundamenta Informaticae 5 (1982), 101–118.
[30]
E. Orłowska. 1985. Logic of indiscernibility relations. In Proceedings of the Symposium on Computation Theory, Zabr\(\acute{\mbox{o}}\)w, 1984,LNCS, G. Goos and J. Hartmanis (Eds.), Vol. 208. Springer Verlag, 177–186.
[31]
E. Orłowska. 1985. Logic of nondeterministic information. Studia Logica 1 (1985), 91–100.
[32]
E. Orłowska and Z. Pawlak. 1984. Representation of nondeterministic information. Theoretical Computer Science 29 (1984), 27–39.
[33]
Z. Pawlak. 1982. Rough sets. International Journal of Computer and Information Science 11(5) (1982), 341–356.
[34]
Z. Pawlak. 1987. Rough logic. Bull. Polish Acad. Sc. (Tech. Sc.) 35, 5–6 (1987), 253–258.
[35]
Z. Pawlak. 1991. Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht.
[36]
C. M. Rauszer. 1994. Rough logic for multiagent systems. In Knowledge Representation and Reasoning under Uncertainty, M. Masuch and L. Polos (Eds.). LNAI, Vol. 808. Springer-Verlag, 161–181.
[37]
J. Stefanowski and A. Tsoukiàs. 1999. On the extension of rough sets under incomplete information. In Proceedings of the 7th International Workshop on New Directions in Rough Sets, Data Mining, and Granular-Soft Computing (RSFDGrC’99), N. Zhong, A. Skowron, and S. Ohsuga (Eds.). Springer-Verlag, London, UK, 73–81.
[38]
P. Synak. 2003. Temporal feature extraction from temporal information systems. In Foundations of Intelligent Systems, Proceedings of ISMIS 2003, LNCS, Vol. 2871, Z. Zhong, Z. W. Ras, S. Tsumoto, and E. Suzuki (Eds.). Springer, Berlin, 270–278.
[39]
D. Vakarelov. 1991. Modal logics for knowledge representation systems. Theoretical Computer Science 90 (1991), 433–456.
[40]
M. Wooldridge, C. Dixon, and M. Fisher. 1998. A tableau-based proof method for temporal logics of knowledge and belief. Journal of Applied Non-Classical Logics 8(3) (1998), 225–258.
[41]
Y. Y. Yao and Q. Liu. 1999. A generalized decision logic in interval-set-valued information tables. In Proceedings of the 7th International Workshop on New Directions in Rough Sets, Data Mining, and Granular-Soft Computing (RSFDGrC’99),LNAI, Vol. 1711, Springer-Verlag, London, UK, 285–293.

Cited By

View all
  • (2024)Intuitionistic Fuzzy Sets for Spatial and Temporal Data IntervalsInformation10.3390/info1504024015:4(240)Online publication date: 20-Apr-2024
  • (2024)A study of modal logic with semantics based on rough set theoryJournal of Applied Non-Classical Logics10.1080/11663081.2024.233638534:2-3(223-247)Online publication date: 5-Apr-2024
  • (2023)Design and Implementation of an Information Management System for Village and Town Planning and Construction Under the Background of a Rural Revitalization Strategy2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE)10.1109/AIKIIE60097.2023.10390208(1-5)Online publication date: 2-Nov-2023

Index Terms

  1. Logics for Temporal Information Systems in Rough Set Theory

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Computational Logic
    ACM Transactions on Computational Logic  Volume 24, Issue 1
    January 2023
    326 pages
    ISSN:1529-3785
    EISSN:1557-945X
    DOI:10.1145/3579819
    • Editor:
    • Anuj Dawar
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 20 January 2023
    Online AM: 19 July 2022
    Accepted: 04 June 2022
    Revised: 19 March 2022
    Received: 20 November 2021
    Published in TOCL Volume 24, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Rough set theory
    2. approximation operator
    3. modal logic
    4. temporal logic
    5. axiomatization

    Qualifiers

    • Research-article
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)37
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 25 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Intuitionistic Fuzzy Sets for Spatial and Temporal Data IntervalsInformation10.3390/info1504024015:4(240)Online publication date: 20-Apr-2024
    • (2024)A study of modal logic with semantics based on rough set theoryJournal of Applied Non-Classical Logics10.1080/11663081.2024.233638534:2-3(223-247)Online publication date: 5-Apr-2024
    • (2023)Design and Implementation of an Information Management System for Village and Town Planning and Construction Under the Background of a Rural Revitalization Strategy2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE)10.1109/AIKIIE60097.2023.10390208(1-5)Online publication date: 2-Nov-2023

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media