Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey

A Critical Review of Multimodal-multisensor Analytics for Anxiety Assessment

Published: 03 November 2022 Publication History

Abstract

Recently, interest has grown in the assessment of anxiety that leverages human physiological and behavioral data to address the drawbacks of current subjective clinical assessments. Complex experiences of anxiety vary on multiple characteristics, including triggers, responses, duration and severity, and impact differently on the risk of anxiety disorders. This article reviews the past decade of studies that objectively analyzed various anxiety characteristics related to five common anxiety disorders in adults utilizing features of cardiac, electrodermal, blood pressure, respiratory, vocal, posture, movement, and eye metrics. Its originality lies in the synthesis and interpretation of consistently discovered heterogeneous predictors of anxiety and multimodal-multisensor analytics based on them. We reveal that few anxiety characteristics have been evaluated using multimodal-multisensor metrics, and many of the identified predictive features are confounded. As such, objective anxiety assessments are not yet complete or precise. That said, few multimodal-multisensor systems evaluated indicate an approximately 11.73% performance gain compared to unimodal systems, highlighting a promising powerful tool. We suggest six high-priority future directions to address the current gaps and limitations in infrastructure, basic knowledge, and application areas. Action in these directions will expedite the discovery of rich, accurate, continuous, and objective assessments and their use in impactful end-user applications.

References

[1]
M. Al-Mosaiwi and T. Johnstone. 2018. In an absolute state: Elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation. Clin. Psychol. Sci. 6, 4 (2018), 529–542.
[2]
S. A. Alim and N. K. A. Rashid. 2018. Some Commonly Used Speech Feature Extraction Algorithms. IntechOpen.
[3]
J. Allsop and R. Gray. 2014. Flying under pressure: Effects of anxiety on attention and gaze behavior in aviation. J. Appl. Res. Mem. Cogn. 3, 2 (2014), 63–71.
[4]
J. Alonso, Z. Liu, S. Evans-Lacko, E. Sadikova, N. Sampson, S. Chatterji, J. Abdulmalik, S. Aguilar-Gaxiola, A. Al-Hamzawi, L. Andrade, R. Bruffaerts, G. Cardoso, A. Cia, S. Florescu, G. Girolamo, O. Gureje, J. Haro, Y. He, P. Jonge, E. Karam, N. Kawakami, V. Kovess-Masfety, S. Lee, D. Levinson, M. Medina-Mora, F. Navarro-Mateu, B. Pennell, M. Piazza, J. Posada-Villa, M. Have, Z. Zarkov, R. Kessler and G. Thornicroft. 2018. Treatment gap for anxiety disorders is global: Results of the world mental health surveys in 21 countries. Depress. Anxiet. 35, 3 (2018), 195–208.
[5]
D. M. Andrade, J. Amaral, P. Trevizan, E. Toschi-Dias, L. Silva, M. Laterza and D. Martinez. 2019. Anxiety increases the blood pressure response during exercise. Motriz: Revista de Educação Física 25, 3 (2019).
[6]
S. R. Arikian and J. M. Gorman. 2001. A review of the diagnosis, pharmacologic treatment, and economic aspects of anxiety disorders. Prim. Care Compan. J. Clin. Psychiat. 3, 3 (2001), 110.
[7]
T. Armstrong and B. O. Olatunji. 2012. Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clin. Psychol. Rev. 32, 8 (2012), 704–723.
[8]
American Psychiatric Association et al. 2013. Diagnostic and Statistical Manual of Mental Disorders (5 ed.). American Psychiatric Pub.
[9]
M. Z. Baharom, F. Delbressine, L. Feijs, and M. Toeters. 2020. Wearability and usability assessment of cliff: An automatized zipper. Journal of Industrial and Intelligent Information Vol 8, 1 (2020).
[10]
M. Balsamo, R. Romanelli, M. Innamorati, G. Ciccarese, L. Carlucci and A. Saggino. 2013. The state-trait anxiety inventory: Shadows and lights on its construct validity. J. Psychopathol. Behav. Assess. 35, 4 (2013), 475–486.
[11]
D. H. Barlow. 2001. Anxiety and Its Disorders: The Nature and Treatment of Anxiety and Panic. Guilford Press.
[12]
M. C. Barnsley. 2012. The Social Consequences of Defensive Physiological States. Ph.D. Dissertation. University of Exeter, UK.
[13]
M. Barreda-Ángeles, S. Aleix-Guillaume, and A. Pereda-Baños. 2020. Users’ psychophysiological, vocal, and self-reported responses to the apparent attitude of a virtual audience in stereoscopic 360\(^{\circ }\)-video. Virt.: J. Virt. Real. Societ. 24, 2 (2020), 289–302.
[14]
T. J. Barry, B. Vervliet, and D. Hermans. 2015. An integrative review of attention biases and their contribution to treatment for anxiety disorders. Front. Psychol. 6 (2015), 968–968.
[15]
T. Beauchaine. 2001. Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Devel. Psychopathol. 13, 2 (2001), 183–214.
[16]
A. T. Beck and E. A. P. Haigh. 2014. Advances in cognitive theory and therapy: The generic cognitive model. Ann. Rev. Clin. Psychol. 10, 1 (2014), 1–24.
[17]
S. Belik, J. Sareen, and M. B. Stein. 2009. Anxiety disorders and physical comorbidity. In Oxford Handb. Anxiet. Relat. Disord. Oxford University Press.
[18]
M. Benedek and C. Kaernbach. 2010. A continuous measure of phasic electrodermal activity. J. Neurosci. Meth. 190, 1 (2010), 80–91.
[19]
V. Berger, M. R. Munk, F. Lersch, S. Wolf, A. Ebneter, and M. S. Zinkernagel. 2019. Association of intravitreal injections with blood pressure increase: The following excitement and anxiety response under intravitreal injection study. JAMA Ophthalm. 137, 1 (2019), 87–90.
[20]
S. K. Bhat, L. J. Beilin, M. Robinson, S. Burrows, and T. Mori. 2017. Relationships between depression and anxiety symptoms scores and blood pressure in young adults. J. Hypertens. 35, 10 (2017), 1983–1991.
[21]
O. J. Bienvenu and G. S. Ginsburg. 2007. Prevention of anxiety disorders. Int. Rev. Psychiat. 19, 6 (2007), 647–654.
[22]
N. Bolger, A. Davis, and E. Rafaeli. 2003. Diary methods: Capturing life as it is lived. Ann. Rev. Psychol. 54, 1 (2003), 579–616.
[23]
R. W. Booth and B. Tekeş. 2019. Individual differences in anxiety and worry, not anxiety disorders, predict weakened executive control: Preliminary evidence. Int. J. Psychol. Psycholog. Therap. 19, 3 (2019), 337–344.
[24]
X. Bornas, A. Riera del Amo, M. Tortella-Feliu, and J. Llabrés. 2012. Heart rate variability profiles and exposure therapy treatment outcome in flight phobia. Appl. Psychophysiol. Biofeed. 37, 1 (2012), 53–62.
[25]
H. Bortfeld, S. D. Leon, J. E. Bloom, M. F. Schober, and S. E. Brennan. 2001. Disfluency rates in conversation: Effects of age, relationship, topic, role, and gender. Lang. Speech 44, 2 (2001), 123–147.
[26]
P. Boyce, A. Harris, J. Drobny, L. Lampe, V. Starcevic, and R. Bryant (Eds.). 2015. The Sydney Handbook of Anxiety Disorders: A Guide to the Symptoms, Causes and Treatments of Anxiety Disorders. The University of Sydney.
[27]
S. L. Brenner, T. P. Beauchaine, and P. D. Sylvers. 2005. A comparison of psychophysiological and self–report measures of BAS and BIS activation. Psychophysiology 42, 1 (2005), 108–115.
[28]
C. Breuninger, D. Sláma, M. Krämer, J. Schmitz, and B. Tuschen-Caffier. 2017. Psychophysiological reactivity, interoception and emotion regulation in patients with agoraphobia during virtual reality anxiety induction. Cogn. Therap. Res. 41, 2 (2017), 193–205.
[29]
T. Brockmeyer, J. Zimmermann, D. Kulessa, M. Hautzinger, H. Bents, H. Friederich, W. Herzog, and M. Backenstrass. 2015. Me, myself, and I: Self-referent word use as an indicator of self-focused attention in relation to depression and anxiety. Front. Psychol. 6 (2015), 1564–1564.
[30]
T. A. Brown. 2014. Anxiety and Related Disorders Interview Schedule for DSM-5RG (ADIS-5)-Adult and Lifetime Version: Clinician Manual. Oxford University Press.
[31]
T. A. Brown, P. A. Di Nardo, and C. L. Lehman. 2001. Reliability of DSM-IV anxiety and mood disorders: Implications for the classification of emotional disorders. J. Abnorm. Psychol. (1965) 110, 1 (2001), 49–58.
[32]
S. C. A. Burkhardt, F. H. Wilhelm, A. E. Meuret, J. Blechert, and W. T. Roth. 2010. Temporal stability and coherence of anxiety, dyspnea, and physiological variables in panic disorder. Biolog Psychol. 85, 2 (2010), 226–232.
[33]
F. Castanedo. 2013. A review of data fusion techniques. TheScientificWorld 2013 (2013), 704504–19.
[34]
J. A. Chalmers, D. S. Quintana, M. J.-Anne Abbott, and A. H. Kemp. 2014. Anxiety disorders are associated with reduced heart rate variability: A meta-analysis. Front. Psychiat. 5 (2014), 80.
[35]
H. Chang, C. Chang, N. Tzeng, T. B. J. Kuo, R. Lu, and S. Huang. 2013. Generalized anxiety disorder, comorbid major depression and heart rate variability: A case-control study in Taiwan. Psychiat. Investig. 10, 4 (2013), 326–335.
[36]
H. Chang, W. Fang, F. Wan, N. Tzeng, Y. Liu, J. Shyu, T. Chang, S. Huang, and C. Chang. 2019. Attenuated vagally-mediated heart rate variability at rest and in response to postural maneuvers in patients with generalized anxiety disorder. Psycholog. Med. 50, 9 (2019), 1433–1441.
[37]
A. Chatterjee, A. Aceves, R. Dungca, H. Flores, and K. Giddens. 2016. Classification of wearable computing: A survey of electronic assistive technology and future design. In 2nd International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). IEEE, 22–27.
[38]
M. Chatterjee, G. Stratou, S. Scherer, and L. P. Morency. 2014. Context-based signal descriptors of heart-rate variability for anxiety assessment. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3631–3635.
[39]
N. T. M. Chen, P. J. F. Clarke, C. MacLeod, I. B. Hickie, and A. J. Guastella. 2016. Aberrant gaze patterns in social anxiety disorder: An eye movement assessment during public speaking. J. Experim. Psychopathol. 7, 1 (2016), 1–17.
[40]
B. F. Chorpita and A. A. Taylor. 2001. Behavioral Assessment of Anxiety Disorders. Springer, Boston, MA, 19–24.
[41]
R. G. Claudino, L. K. S. de Lima, E. D. B. de Assis, and N. Torro. 2019. Facial expressions and eye tracking in individuals with social anxiety disorder: A systematic review. Psicologia, Reflexão e Crítica 32, 1 (2019), 1–10.
[42]
T. W. Cleworth, B. C. Horslen, and M. G. Carpenter. 2012. Influence of real and virtual heights on standing balance. Gait Posture 36, 2 (2012), 172–176.
[43]
J. F. Cohn, N. Cummins, J. Epps, R. Goecke, J. Joshi, and S. Scherer. 2018. Multimodal assessment of depression from behavioral signals. In The Handbook of Multimodal-multisensor Interfaces: Signal Processing, Architectures, and Detection of Emotion and Cognition-Volume 2. ACM, 375–417.
[44]
M. E. Coles and R. G. Heimberg. 2002. Memory biases in the anxiety disorders: Current status. Clin. Psychol. Rev. 22, 4 (2002), 587–627.
[45]
C. D. Conrad. 2011. The Handbook of Stress: Neuropsychological Effects on the Brain. John Wiley & Sons, Incorporated, Hoboken.
[46]
F. Cosci and G. A. Fava. 2013. Staging of mental disorders: Systematic review. Psychother. Psychosom. 82, 1 (2013), 20–34.
[47]
B. J. Cox, E. Cohen, D. M. Direnfeld, and R. P. Swinson. 1996. Does the Beck anxiety inventory measure anything beyond panic attack symptoms? Behav. Res. Ther. 34, 11 (1996), 949–954.
[48]
M. Czerwinski, D. W. Gage, et al. 2006. Digital memories in an era of ubiquitous computing and abundant storage. Commun. ACM 49, 1 (Jan. 2006), 44–50.
[49]
N. Dael, M. Mortillaro, and K. R. Scherer. 2012. Emotion expression in body action and posture. Emotion (Wash., D.C.) 12, 5 (2012), 1085–1101.
[50]
P. Datta, A. Namin, and M. Chatterjee. 2018. A survey of privacy concerns in wearable devices. In IEEE International Conference on Big Data. IEEE, 4549–4553.
[51]
S. J. C. Davies, O. Bjerkeset, D. J. Nutt, and G. Lewis. 2012. A U-shaped relationship between systolic blood pressure and panic symptoms: The HUNT study. Psycholog. Med. 42, 9 (2012), 1969–1976.
[52]
M. E. Dawson, A. M. Schell, and D. L. Filion. 2017. The electrodermal system. Handbook of psychophysiology. Cambridge University Press, 217–243.
[53]
P. J. de Jong. 2014. Information processing. Wiley Handb. Anxiet. Disord. (2014), 125–147.
[54]
N. S. de Souza, A. C. G. Martins, D. J. A. Alexandre, M. Orsini, V. H. do Vale Bastos, M. A. A. Leite, S. Teixeira, B. Velasques, P. Ribeiro, J. Bittencourt, A. P. da Cunha Matta, and P. M. Filho. 2015. The influence of fear of falling on orthostatic postural control: A systematic review. Neurol. Int. 7, 3 (2015), 62–65.
[55]
L. Dell’Osso, D. Marazziti, E. D. Pozzo, C. Conversano, S. Baroni, G. Massimetti, C. Martini, and C. Carmassi. 2012. Gender effect on the relationship between stress hormones and panic-agoraphobic spectrum dimensions in healthy subjects. CNS Spect. 17, 4 (2012), 214–220.
[56]
D. Dias and J. Cunha. 2018. Wearable health devices-Vital sign monitoring, systems and technologies. Sensors 18, 8 (2018), 2414.
[57]
J. Diemer, N. Lohkamp, A. Mühlberger, and P. Zwanzger. 2015. Fear and physiological arousal during a virtual height challenge-Effects in patients with acrophobia and healthy controls. J. Anxiet. Disord. 37 (2015), 30–39.
[58]
T. Diveky, J. Prasko, K. Latalova, A. Grambal, D. Kamaradova, P. Silhan, and I. Tonhajzerova. 2012. Heart rate variability spectral analysis in patients with panic disorder compared with healthy controls. Neuroendocrinol. Lett. 33, 2 (2012), 156–66.
[59]
S. D’Mello and J. Kory. 2012. Consistent but modest: A meta-analysis on unimodal and multimodal affect detection accuracies from 30 studies. In Proceedings of the 14th ACM International Conference on Multimodal Interaction (ICMI’12). ACM, 31–38.
[60]
S. K. D’Mello and J. Kory. 2015. A review and meta-analysis of multimodal affect detection systems. ACM Comput. Surv. 47, 3 (Feb. 2015).
[61]
S. Doberenz, W. T. Roth, E. Wollburg, C. Breuninger, and S. Kim. 2010. Twenty-four hour skin conductance in panic disorder. J. Psychiat. Res. 44, 16 (2010), 1137–1147.
[62]
E. Dogan, C. Sander, X. Wagner, U. Hegerl, and E. Kohls. 2017. Smartphone-based monitoring of objective and subjective data in affective disorders: Where are we and where are we going? Systematic review. J. Med. Internet Res. 19, 7 (2017), e262.
[63]
G. Durdu, M. Kayikcioǧlu, Ş. Pirildar, and T. Köse. 2018. Evaluation of heart rate variability in drug free panic disorder patients. Noro-Psikiyatri Arsivi 55, 4 (2018), 364–369.
[64]
S. Eap, R. L. Gobin, J. Ng, and G. C. N. Hall. 2011. 17 sociocultural issues in the diagnosis and assessment of psychological disorders. Soc. Psycholog. Found. Clin. Psychol. (2011), 312.
[65]
D. Edmondson, J. Arndt, C. Alcántara, W. Chaplin, and J. E. Schwartz. 2015. Self-esteem and the acute effect of anxiety on ambulatory blood pressure. Psychosom. Med. 77, 7 (2015), 833–841.
[66]
C. B. Edwards, A. L. Billingsley, and S. A. Steinman. 2019. Anxiety Disorders. Springer, New York, NY, 129–153.
[67]
T. Ehring. 2014. Cognitive theory. In The Wiley Handbook of Anxiety Disorders. John Wiley & Sons, Ltd, Chichester, UK, 104–124.
[68]
M. Elgendi and C. Menon. 2019. Assessing anxiety disorders using wearable devices: Challenges & future directions. Brain Sci. 9, 3 (2019), 50.
[69]
N. S. Endler and N. L. Kocovski. 2001. State and trait anxiety revisited. J. Anxiet. Disord. 15, 3 (2001), 231–245.
[70]
T. M. Erickson, M. G. Newman, and J. L. Tingey. 2020. Worry and rumination. Clinical handbook of fear and anxiety: Maintenance processes and treatment mechanisms. American Psychological Association. 133–151.
[71]
L. A. Fairbanks, M. T. McGuire, and C. J. Harris. 1982. Nonverbal interaction of patients and therapists during psychiatric interviews. J. Abnorm. Psychol. (1965) 91, 2 (1982), 109–119.
[72]
C. Faravelli, C. L. Sauro, L. Lelli, F. Pietrini, L. Lazzeretti, L. Godini, L. Benni, G. Fioravanti, G. A. Talamba, G. Castellini, and V. Ricca. 2012. The role of life events and HPA axis in anxiety disorders: A review. Curr. Pharmaceut. Des. 18, 35 (2012), 11.
[73]
L. Fava and J. Morton. 2009. Causal modeling of panic disorder theories. Clin. Psychol. Rev. 29, 7 (2009), 623–637.
[74]
D. Ferreira, V. Kostakos, and A. K. Dey. 2015. AWARE: Mobile context instrumentation framework. Front. ICT (2015), 6.
[75]
M. B. First. 2014. Structured clinical interview for the DSM (SCID). Encyc. Clin. Psychol. (2014), 1–6.
[76]
A. J. Fisher, D. A. Granger, and M. G. Newman. 2010. Sympathetic arousal moderates self-reported physiological arousal symptoms at baseline and physiological flexibility in response to a stressor in generalized anxiety disorder. Biolog. Psychol. 83, 3 (2010), 191–200.
[77]
A. J. Fisher and S. H. Woodward. 2014. Cardiac stability at differing levels of temporal analysis in panic disorder, post-traumatic stress disorder, and healthy controls. Psychophysiology 51, 1 (2014), 80–87.
[78]
H. Flores, P. Nurmi, and P. Hui. 2019. AI on the move: From on-device to on-multi-device. In IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 310–315.
[79]
R. C. Freire, M. R. De Carvalho, M. Joffily, W. A. Zin, and A. E. Nardiab. 2010. Anxiogenic properties of a computer simulation for panic disorder with agoraphobia. J. Affect. Disord. 125, 1 (2010), 301–306.
[80]
R. C. Freire, R. Ferreira-Garcia, M. C. Cabo, R. M. Martins, and A. E. Nardib. 2020. Panic attack provocation in panic disorder patients with a computer simulation. J. Affect. Disord. 264 (2020), 498–505.
[81]
B. H. Friedman. 2007. An autonomic flexibility–neurovisceral integration model of anxiety and cardiac vagal tone. Biolog. Psychol. 74, 2 (2007), 185–199.
[82]
T. Fydrich, D. Dowdall, and D. L. Chamb. 1992. Reliability and validity of the Beck anxiety inventory. J. Anxiet. Disord. 6, 1 (1992), 55–61.
[83]
G. Gainotti. 2019. The role of the right hemisphere in emotional and behavioral disorders of patients with frontotemporal lobar degeneration: An updated review. Front. Aging Neurosci. 11 (2019), 55–55.
[84]
L. Galili, O. Amir, and E. Gilboa-Schechtman. 2013. Acoustic properties of dominance and request utterances in social anxiety. J. Soc. Clin. Psychol. 32, 6 (2013), 651–673.
[85]
E. Garcia-Ceja, M. Riegler, T. Nordgreen, P. Jakobsen, K. J. Oedegaard, and J. Tørresen. 2018. Mental health monitoring with multimodal sensing and machine learning: A survey. Pervas. Mob. Comput. 51 (2018), 1–26.
[86]
R. D. Gavas, D. Das, T. Bhattacharjee, M. B. Sheshachala, L. K. Hissaria, R. R. Vempada, V. S. Viraraghavan, A. D. Choudhury, K. Muralidharan, R. K. Ramakrishnan, and P. Balamuralidhar. 2019. A sensor-enabled digital trier social stress test in an enterprise context. In 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 1321–1325.
[87]
J. Gelernter and M. B. Stein. 2008. Heritability and genetics of anxiety disorders. Oxford Handb. Anxiet. Relat. Disord. (2008), 87.
[88]
D. Gerstorf, K. L. Siedlecki, E. M. Tucker-Drob, and T. A. Salthouse. 2009. Within-person variability in state anxiety across adulthood: Magnitude and associations with between-person characteristics. Int. J. Behav. Devel. 33, 1 (2009), 55–64.
[89]
C. L. Giddens, K. W. Barron, J. Byrd-Craven, K. F. Clark, and A. S. Winter. 2013. Vocal indices of stress: A review. J. Voice 27, 3 (2013), 390.e21–390.e29.
[90]
E. Gilboa-Schechtman, L. Galili, et al. 2014. Being “in” or “out” of the game: Subjective and acoustic reactions to exclusion and popularity in social anxiety. Front. Hum. Neurosci. 8 (2014), 147.
[91]
P. T. Gilchrist and B. Ditto. 2012. The effects of blood-draw and injection stimuli on the vasovagal response. Psychophysiology 49, 6 (2012), 6.
[92]
A. M. Goberman, S. Hughes, and T. Haydock. 2011. Acoustic characteristics of public speaking: Anxiety and practice effects. Speech Commun. 53, 6 (2011), 867–876.
[93]
J. C. F. Goulart, M. D. Pinheiro, R. V. Rodrigues, F. de S. dos Santos, A. T. Martins, and F. L. F. Scannavino. 2012. Influence of anxiety on blood pressure and heart rate during dental treatment. Revista Odonto Ciência 27, 1 (2012), 31–35.
[94]
C. E. Gould and S. A. Beaudreau. 2013. Association between depression and anxiety on blood pressure dysregulation and pulse in the health and retirement study. Int. J. Geriat. Psychiat. 28, 10 (2013), 1045–1053.
[95]
D. T. Graham, J. D. Kabler, and J. L. Lunsford. 1961. Vasovagal fainting: A diphasic response. Psychosom. Med. 23, 6 (1961), 493–507.
[96]
J. Gratch, R. Artstein, G. Lucas, G. Stratou, S. Scherer, A. Nazarian, R. Wood, J. Boberg, D. DeVault, S. Marsella, and D. Traum. 2014. The distress analysis interview corpus of human and computer interviews. In Conference on Language Resources and Evaluation. 3123–3128.
[97]
A. Gremsl, D. Schwab, C. Höfler, and A. Schienle. 2018. Placebo effects in spider phobia: An eye-tracking experiment. Cogn. Emot. 32, 8 (2018), 1571–1577.
[98]
N. Gündüz, E. A. Aslan, F. Eren, H. S. Turan, M. Öztürk, and Ü. Tural. 2019. Analysis of 24-hour heart rate variability among panic disorder patients without previous drug treatment and comorbid disorders. Türk Psikiyatri Dergisi 30, 4 (2019), 236–244.
[99]
M. Haghi, K. Thurow, and R. Stoll. 2017. Wearable devices in medical internet of things: Scientific research and commercially available devices. Healthc. Inform. Res. 23, 1 (2017), 4–15.
[100]
J. Hainaut, G. Caillet, F. G. Lestienne, and B. Bolmont. 2011. The role of trait anxiety on static balance performance in control and anxiogenic situations. Gait Posture 33, 4 (2011), 604–608.
[101]
J. C. Hammel, T. A. Smitherman, F. D. McGlynn, A. M. M. Mulfinger, A. A. Lazarte, and K. D. Gothard. 2011. Vagal influence during worry and cognitive challenge. Anxiet, Stress, Coping 24, 2 (2011), 121–136.
[102]
J. L. Harrington and M. M. Antony. 2009. Assessment of anxiety disorders. Oxford Handb. Anxiet. Relat. Disord. (2009), 277–291.
[103]
T. Henriques, M. Ribeiro, A. Teixeira, L. Castro, L. Antunes, and C. Costa-Santos. 2020. Nonlinear methods most applied to heart-rate time series: A review. Entropy 22, 3 (2020), 309.
[104]
B. Hildrum, U. Romild, and J. Holmen. 2011. Anxiety and depression lowers blood pressure: 22-year follow-up of the population based HUNT study, Norway. BMC Pub. Health 11, 1 (2011), 601–601.
[105]
S. G. Hofmann, S. M. Schulz, S. Heering, F. Muench, and L. F. Bufka. 2010. Psychophysiological correlates of generalized anxiety disorder with or without comorbid depression. Int. J. Psychophysiol. 78, 1 (2010), 35–41.
[106]
S. G. Hofmann and J. A. J. Smits. 2008. Cognitive-behavioral therapy for adult anxiety disorders: A meta-analysis of randomized placebo-controlled trials. J. Clin. Psychiat. 69, 4 (2008), 621–632.
[107]
M. Honma. 2013. Hyper-volume of eye-contact perception and social anxiety traits. Conscious. Cogn. 22, 1 (2013), 167–173.
[108]
M. D. Hoogerwerf, A. van Dongen, R. A. Middelburg, E. M. Merz, W. L. A. M. de Kort, M. H. W. Frings-Dresen, J. K. Sluiter, and I. J. T. Veldhuizen. 2017. Negative experiences and pre-donation blood pressure: The role of attitude and anxiety. Transfus. Med. (Oxford, Engl.) 27, 2 (2017), 105–113.
[109]
A. N. Howell, D. A. Zibulsky, A. Srivastav, and J. W. Weeks. 2016. Relations among social anxiety, eye contact avoidance, state anxiety, and perception of interaction performance during a live conversation. Cogn. Behav. Therap. 45, 2 (2016), 111–122.
[110]
J. L. Hudson and R. M. Rapee. 2009. Familial and social environments in the etiology and maintenance of anxiety disorders. Oxford Handb. Anxiet. Relat. Disord. (2009), 173–189.
[111]
J. Huppert. 2009. Anxiety disorders and depression comorbidity. Anxiety 35, 27 (2009), 65.
[112]
J. D. Huppert, D. Roth Ledley, and E. B. Foa. 2006. The use of homework in behavior therapy for anxiety disorders. J. Psychother. Integ. 16, 2 (2006), 128–139.
[113]
S. S. Imam. 2008. Depression anxiety stress scales (DASS): Revisited. J. Behav. Sci. 3, 1 (2008), 104–116.
[114]
T. Insel, B. Cuthbert, M. Garvey, R. Heinssen, D. S. Pine, K. Quinn, C. Sanislow, and P. Wang. 2010. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Amer. J. Psychiat. 167, 7 (2010), 748–751.
[115]
N. C. Jacobson, B. Summers, and S. Wilhelm. 2020. Digital biomarkers of social anxiety severity: Digital phenotyping using passive smartphone sensors. J. Med. Internet Res. 22, 5 (2020), e16875.
[116]
C. Janiesch, P. Zschech, and K. Heinrich. 2021. Machine learning and deep learning. Electron. Mark. 31, 3 (2021), 685–695.
[117]
C. Jing, X. Liu, et al. 2019. Different performances of speech and natural gait in identifying anxiety and depression. In Human Centered Computing. Springer, Cham, 200–210.
[118]
L. Johannessen, U. Strudsholm, L. Foldager, and P. Munk-Jørgensen. 2006. Increased risk of hypertension in patients with bipolar disorder and patients with anxiety compared to background population and patients with schizophrenia. J. Affect. Disord 95, 1–3 (2006), 13–17.
[119]
E. M. Johnson and M. E. Coles. 2013. Failure and delay in treatment-seeking across anxiety disorders. Commun. Ment. Health J. 49, 6 (2013), 668–674.
[120]
K. J. Johnson, M. Zaback, C. D. Tokuno, M. G. Carpenter, and A. L. Adkin. 2019. Exploring the relationship between threat-related changes in anxiety, attention focus, and postural control. Psycholog. Res. 83, 3 (2019), 445–458.
[121]
L. J. Julian. 2011. Measures of anxiety: State–Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale–Anxiety (HADS–A). Arthr. Care Res. (2010) 63, S11 (2011), S467–S472.
[122]
E. Kang, I. Lee, J. Park, K. Kim, and B. Yu. 2010. Platelet serotonin transporter function and heart rate variability in patients with panic disorder. J. Kor. Med. Sci. 25, 4 (2010), 613–618.
[123]
A. Kapoor and R. W. Picard. 2005. Multimodal affect recognition in learning environments. In 13th Annual ACM International Conference on Multimedia. 677–682.
[124]
B. Kerous, R. Barteček, R. Roman, P. Sojka, O. Bečev, and F. Liarokapis. 2020. Social environment simulation in VR elicits a distinct reaction in subjects with different levels of anxiety and somatoform dissociation. Int. J. Hum.–Comput. Interact. 36, 6 (2020), 505–515.
[125]
H. Kim, J. E. Shin, Y. Hong, Y. Shin, Y. S. Shin, K. Han, J. Kim, and S. Choi. 2018. Aversive eye gaze during a speech in virtual environment in patients with social anxiety disorder. Austral. New Zeal. J. Psychiat. 52, 3 (2018), 279–285.
[126]
K. Kim, S. Lee, and J. H. Kim. 2016. Diminished autonomic neurocardiac function in patients with generalized anxiety disorder. Neuropsychiat. Dis. Treat. 12 (2016), 3111–3118.
[127]
S. Kim, N. Kwon, H. O’Connell, N. Fisk, S. Ferguson, and M. Bartlett. 2020. “How are you?” Estimation of anxiety, sleep quality, and mood using computational voice analysis. In 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 5369–5373.
[128]
A. Konnopka and H. Koenig. 2020. Economic burden of anxiety disorders: A systematic review and meta-analysis. PharmacoEconomics 38, 1 (2020), 25–37.
[129]
S. G. Koolagudi, S. Ray, and K. S. Rao. 2010. Emotion classification based on speaking rate. In Contemporary Computing. Communications in Computer and Information Science, Vol. 94. Springer, Berlin, 316–327.
[130]
S. Kotani and S. Furuya. 2018. State anxiety disorganizes finger movements during musical performance. J. Neurophysiol. 120, 2 (2018), 439–451.
[131]
S. D. Kreibig. 2010. Autonomic nervous system activity in emotion: A review. Biolog. Psychol. 84, 3 (2010), 394–421.
[132]
D. Krupić, B. Žuro, and P. J. Corr. 2021. Anxiety and threat magnification in subjective and physiological responses of fear of heights induced by virtual reality. Personal. Indiv. Differ. 169 (2021), 109720.
[133]
A. Lahat, M. Hong, and N. A. Fox. 2011. Behavioural inhibition: Is it a risk factor for anxiety? Int. Rev. Psychiat. 23, 3 (2011), 248–257.
[134]
M. Lang, J. Krátký, J. H. Shaver, D. Jerotijević, and D. Xygalatas. 2015. Effects of anxiety on spontaneous ritualized behavior. Curr. Biol. 25, 14 (2015), 1892–1897.
[135]
A. Lemasson, V. André, M. Boudard, D. Lippi, and M. Hausberger. 2018. Audience size influences actors’ anxiety and associated postures on stage. Behav. Process. 157 (2018), 225–229.
[136]
R. M. Lento and H. Boland. 2019. Suicide in anxiety disorders. In Clinical Handbook of Anxiety Disorders. Springer, Cham, 203–220.
[137]
M. Lhommet and S. C. Marsella. 2014. Expressing emotion through posture. Oxford Handb. Affect. Comput. 273 (2014).
[138]
T. Liang and Y. J. Yuan. 2016. Wearable medical monitoring systems based on wireless networks: A review. IEEE Sensors J. 16, 23 (2016), 8186–8199.
[139]
E. Liebenthal, D. A. Silbersweig, and E. Stern. 2016. The language, tone and prosody of emotions: Neural substrates and dynamics of spoken-word emotion perception. Front. Neurosci. 10 (2016), 506–506.
[140]
D. M. Lipnicki and D. G. Byrne. 2008. An effect of posture on anticipatory anxiety. Int. J. Neurosci. 118, 2 (2008), 227–237.
[141]
D. M. Low, K. H. Bentley, and S. S. Ghosh. 2020. Automated assessment of psychiatric disorders using speech: A systematic review. Laryng. Investig. Otolaryng. 5, 1 (2020), 96–116.
[142]
U. Lueken, J. D. Kruschwitz, M. Muehlhan, J. Siegert, J. Hoyer, and H. Wittchen. 2011. How specific is specific phobia? Different neural response patterns in two subtypes of specific phobia. NeuroImage (Orl., Fla.) 56, 1 (2011), 363–372.
[143]
V. A. MacIntyre, P. D. MacIntyre, and G. Carre. 2010. Heart rate variability as a predictor of speaking anxiety. Commun. Res. Rep. 27, 4 (2010), 11.
[144]
B. Martin. 1961. The assessment of anxiety by physiological behavioral measures. Psycholog. Bull. 58, 3 (1961), 234–255.
[145]
J. M. Martinez, A. Garakani, H. Kaufmann, C. J. Aaronson, and J. M. Gorman. 2010. Heart rate and blood pressure changes during autonomic nervous system challenge in panic disorder patients. Psychosom. Med. 72, 5 (2010), 442–449.
[146]
R. E. McCabe. 2015. Subjective units of distress scale. Phobias 18 (2015), 361.
[147]
P. Melillo, M. Bracale, and L. Pecchia. 2011. Nonlinear heart rate variability features for real-life stress detection. Case study: Students under stress due to university examination. Biomed. Eng. Online 10, 1 (2011), 1–13.
[148]
T. Meng, X. Jing, Z. Yan, and W. Pedrycz. 2020. A survey on machine learning for data fusion. Inf. Fusion 57 (2020), 115–129.
[149]
M. Merenda, C. Porcaro, and D. Iero. 2020. Edge machine learning for AI-enabled IoT devices: A review. Sensors (Basel, Switzer.) 20, 9 (2020), 2533.
[150]
A. E. Meuret, D. Rosenfield, F. H. Wilhelm, E. Zhou, A. Conrad, T. Ritz, and W. T. Rothd. 2011. Do unexpected panic attacks occur spontaneously? Biolog. Psychiat. (1969) 70, 10 (2011), 985–991.
[151]
J. Meyer and et al. 2014. Why do clinicians exclude anxious clients from exposure therapy? Behav. Res. Therap. 54, 1 (2014), 5.
[152]
A. Mkrtchian, J. Aylward, P. Dayan, J. P. Roiser, and O. J. Robinson. 2017. Modelling avoidance in mood and anxiety disorders using reinforcement-learning. Biolog. Psychiat. 82, 7 (2017), 532–539.
[153]
J. L. M. Mumm, L. Pyrkosch, J. Plag, P. Nagel, M. B. Petzold, S. Bischoff, L. Fehm, T. Fydrich, and A. Ströhle. 2019. Heart rate variability in patients with agoraphobia with or without panic disorder remains stable during CBT but increases following in-vivo exposure. J. Anxiet. Disord. 64 (2019), 16–23.
[154]
A. L. Nelson, C. Purdon, L. Quigley, J. Carriere, and D. Smilek. 2015. Distinguishing the roles of trait and state anxiety on the nature of anxiety-related attentional biases to threat using a free viewing eye movement paradigm. Cogn. Emot. 29, 3 (2015), 504–526.
[155]
J. Onnela, C. Dixon, K. Griffin, T. Jaenicke, L. Minowada, S. Esterkin, A. Siu, J. Zagorsky, and E. Jones. 2021. Beiwe: A data collection platform for high-throughput digital phenotyping. J. Open Source Softw. 6, 68 (2021), 3417.
[156]
World Health Organization. 2017. Depression and Other Common Mental Disorders: Global Health Estimates. Technical Report. World Health Organization.
[157]
F. L. Osório, S. R. Loureiro, J. E. C. Hallak, J. P. Machado-de-Sousa, J. M. Ushirohira, C. V. W. Baes, T. D. Apolinario, M. F. Donadon, L. M. Bolsoni, T. Guimarães, V. S. Fracon, A. P. C. Silva-Rodrigues, F. A. Pizeta, R. M. Souza, R. F. Sanches, R. G. dos Santos, R. Martin-Santos, and J. A. S. Crippa. 2019. Clinical validity and intrarater and test–retest reliability of the Structured Clinical Interview for DSM-5 – Clinician Version (SCID-5-CV). Psychiat. Clin. Neurosci. 73, 12 (2019), 754–760.
[158]
S. Oviatt. 2002. Breaking the robustness barrier: Recent progress on the design of robust multimodal systems. In Advances in Computers, Vol. 56. Elsevier, 305–341.
[159]
S. Oviatt, B. Schuller, P. Cohen, D. Sonntag, and G. Potamianos (Eds.). 2017. The Handbook of Multimodal-Multisensor Interfaces: Foundations, User Modeling, and Common Modality Combinations. Vol. 1. Association for Computing Machinery and Morgan & Claypool.
[160]
S. Oviatt, B. Schuller, et al. (Eds.). 2018. The Handbook of Multimodal-Multisensor Interfaces: Signal Processing, Architectures, and Detection of Emotion and Cognition. Vol. 2. Association for Computing Machinery and Morgan & Claypool.
[161]
S. Oviatt, B. Schuller, P. Cohen, D. Sonntag, G. Potamianos, and A. Krüger (Eds.). 2019. The Handbook of Multimodal-Multisensor Interfaces: Language Processing, Software, Commercialization, and Emerging Directions. Vol. 3. Association for Computing Machinery and Morgan & Claypool.
[162]
M. E. Owens and D. C. Beidel. 2015. Can virtual reality effectively elicit distress associated with social anxiety disorder? J. Psychopath. Behav. Assess. 37, 2 (2015), 296–305.
[163]
T. Özseven. 2018. Voice traces of anxiety: Acoustic parameters affected by anxiety disorder. Arch. Acoustics. 43, 4 (2018), 625–636.
[164]
X. Pan, M. Gillies, C. Barker, D. M. Clark, and M. Slater. 2012. Socially anxious and confident men interact with a forward virtual woman: An experimental study. PloS One 7, 4 (2012), e32931.
[165]
Y. Pan, W. Cai, Q. Cheng, W. Dong, T. An, and J. Yan. 2015. Association between anxiety and hypertension: A systematic review and meta-analysis of epidemiological studies. Neuropsychiat. Dis. Treat. 11 (2015), 1121–1130.
[166]
L. Parkitny and J. McAuley. 2010. The depression anxiety stress scale (DASS). J. Physiother. 56, 3 (2010), 204–204.
[167]
D. Paul, M. Pal, and G. Saha. 2017. Spectral features for synthetic speech detection. IEEE J. Select. Top. Sig. Process. 11, 4 (2017), 605–617.
[168]
D. L. Phillips and K. J. Clancy. 1970. Response biases in field studies of mental illness. Amer. Sociolog. Rev. 35, 3 (1970), 503–515.
[169]
R. W. Picard. 1997. Affective Computing. The MIT Press, Cambridge, Mass.97033285
[170]
A. Pittig, J. J. Arch, C. W. R. Lam, and M. G. Craske. 2013. Heart rate and heart rate variability in panic, social anxiety, obsessive-Compulsive, and generalized anxiety disorders at baseline and in response to relaxation and hyperventilation. Int. J. Psychophysiol. 87, 1 (2013), 19–27.
[171]
S. W. Porges. 2003. The polyvagal theory: Phylogenetic contributions to social behavior. Physiol. Behav. 79, 3 (2003), 503–513.
[172]
S. Poria, E. Cambria, R. Bajpai, and A. Hussain. 2017. A review of affective computing: From unimodal analysis to multimodal fusion. Inf. Fusion 37 (2017).
[173]
W. N. Price and I. G. Cohen. 2019. Privacy in the age of medical big data. Nat. Med. 25, 1 (2019), 37–43.
[174]
L. Quigley, A. L. Nelson, J. Carriere, D. Smilek, and C. Purdon. 2012. The effects of trait and state anxiety on attention to emotional images: An eye-tracking study. Cogn. Emot. 26, 8 (2012), 1390–1411.
[175]
Hannah R. and Max R. 2018. Mental health. Our World in Data (2018). Retrieved from https://ourworldindata.org/mental-health.
[176]
H. Rashid S. Mendu, K. E. Daniel, M. L. Beltzer, B. A. Teachman, M. Boukhechba, and L. E. Barnes. 2020. Predicting Subjective Measures of Social Anxiety from Sparsely Collected Mobile Sensor Data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 3 (2020), 24.
[177]
M. Reuter, A. J. Cooper, L. D. Smillie, S. Markett, and C. Montag. 2015. A new measure for the revised reinforcement sensitivity theory: Psychometric criteria and genetic validation. Front. Syst. Neurosci. 9 (2015), 38–38.
[178]
J. Richter, A. O. Hamm, C. A. Pané-Farré, A. L. Gerlach, A. T. Gloster, H. Wittchen, T. Lang, G. W. Alpers, S. Helbig-Lang, J. Deckert, T. Fydrich, L. Fehm, A. Ströhle, T. Kircher, and V. Arolt. 2012. Dynamics of defensive reactivity in patients with panic disorder and agoraphobia: Implications for the etiology of panic disorder. Biolog. Psychiat. (1969) 72, 6 (2012), 512–520.
[179]
G. Rizos and B. W. Schuller. 2020. Average Jane, where art thou? – Recent avenues in efficient machine learning under subjectivity uncertainty. In Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer, Cham, 42–55.
[180]
O. J. Robinson, K. Vytal, B. R. Cornwell, and C. Grillon. 2013. The impact of anxiety upon cognition: Perspectives from human threat of shock studies. Front. Hum. Neurosci. 7 (2013), 203–203.
[181]
D. Rosenfield, E. Zhou, F. H. Wilhelm, A. Conrad, W. T. Roth, and A. E. Meuret. 2010. Change point analysis for longitudinal physiological data: Detection of cardio-respiratory changes preceding panic attacks. Biolog. Psychol. 84, 1 (2010), 112–120.
[182]
J. Rubin, R. Abreu, S. Ahern, H. Eldardiry, and D. G. Bobrow. 2016. Time, frequency & complexity analysis for recognizing panic states from physiologic time-series. In EAI International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth’16). 81–88.
[183]
E. Ruiz-Padial, John J. Sollers III, J. Vila, and J. F. Thayer. 2003. The rhythm of the heart in the blink of an eye: Emotion-modulated startle magnitude covaries with heart rate variability. Psychophysiology 40, 2 (2003), 306–313.
[184]
A. Salekin, J. Eberle, J. J. Glenn, B. A. Teachman, and J. A. Stankovic. 2018. A weakly supervised learning framework for detecting social anxiety and depression. Proc. ACM Interact., Mob., Wear. Ubiq. Technol. 2, 2 (2018), 1–26.
[185]
J. Salkevicius, R. Damasevicius, R. Maskeliunas, and I. Laukienė. 2019. Anxiety level recognition for virtual reality therapy system using physiological signals. Electronics 8 (9 2019).
[186]
A. Sano, P. Johns, and M. Czerwinski. 2017. Designing opportune stress intervention delivery timing using multi-modal data. In 7th International Conference on Affective Computing and Intelligent Interaction (ACII). 346–353.
[187]
K. R. Scherer. 1979. Nonlinguistic vocal indicators of emotion and psychopathology. In Emotions in Personality and Psychopathology. Springer, Boston, MA, 493–529.
[188]
K. R. Scherer. 1986. Vocal affect expression: A review and a model for future research. Psycholog. Bull. 99, 2 (1986), 143–165.
[189]
S. Scherer, G. Stratou, M. Mahmoud, J. Boberg, J. Gratch, A. Rizzo, and L. P. Morency. 2013. Automatic behavior descriptors for psychological disorder analysis. In 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). IEEE, 1–8.
[190]
L. A. Schmidt, D. L. Santesso, V. Miskovic, K. J. Mathewson, R. E. McCabe, M. M. Antony, and D. A. Moscovitch. 2012. Test–retest reliability of regional electroencephalogram (EEG) and cardiovascular measures in social anxiety disorder (SAD). Int. J. Psychophys. 84, 1 (2012), 65–73.
[191]
R. L. Schneider, J. J. Arch, and K. B. Wolitzky-Taylor. 2015. The state of personalized treatment for anxiety disorders: A systematic review of treatment moderators. Clin. Psychol. Rev. 38 (2015), 39–54.
[192]
S. Seneviratne, Y. Hu, T. Nguyen, G. Lan, S. Khalifa, K. Thilakarathna, M. Hassan, and A. Seneviratne. 2017. A survey of wearable devices and challenges. IEEE Commun. Surv. Tutor. 19, 4 (2017), 48.
[193]
F. Shaffer and J. P. Ginsberg. 2017. An overview of heart rate variability metrics and norms. Front. Pub. Health 5 (2017), 258–258.
[194]
J. G. Shalom, H. Israeli, O. Markovitzky, and J. D. Lipsitz. 2015. Social anxiety and physiological arousal during computer mediated vs. face to face communication. Comput. Hum. Behav. 44 (2015), 202–208.
[195]
S. Shankman, C. Funkhouser, D. N. Klein, J. Davila, D. Lerner, and D. Hee. 2017. Reliability and validity of severity dimensions of psychopathology assessed using the Structured Clinical Interview for DSM-5 (SCID). Int. J. Meth. Psychiat. Res. 27 (10 2017), e1590.
[196]
H. Shen, L. Zhang, C. Xu, J. Zhu, M. Chen, and Y. Fang. 2018. Analysis of misdiagnosis of bipolar disorder in an outpatient setting. Shanghai Jingshen Yixue 30, 2 (2018).
[197]
E. H. Siegel, M. K. Sands, W. V. den Noortgate, P. Condon, Y. Chang, J. Dy, K. S. Quigley, and L. F. Barrett. 2018. Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psycholog. Bull. 144, 4 (2018), 343.
[198]
V. Silber-Varod, H. Kreiner, R. Lovett, Y. Levi-Belz, and N. Amir. 2016. Do social anxiety individuals hesitate more? The prosodic profile of hesitation disfluencies in Social Anxiety Disorder individuals. In Speech Prosody 2016. SpeechProsody. 1211–1215.
[199]
A. Spence. 2014. Threat and safety: The neurobiology of active and passive defense responses. Neurobiol. Treat. Traum. Dissoc.: Toward. Embod. Self (2014), Chapter 2, 29.
[200]
K. Stambolieva and G. Angov. 2010. Balance control in quiet upright standing in patients with panic disorder. Eur. Arch. Oto-rhino-laryng. 267, 11 (2010), 1695–1699.
[201]
R. A. Steer and A. T. Beck. 1997. Beck anxiety inventory. Evaluating stress: A book of resources. Scarecrow Education, 23–40.
[202]
T. Steimer. 2002. The biology of fear- and anxiety-related behaviors. Dialog. Clin. Neurosci. 4, 3 (2002), 231–249.
[203]
D. J. Stein. 2012. Dimensional or categorical: Different classifications and measures of anxiety and depression. Medicographia 34 (2012), 5.
[204]
D. J. Stein, S. Aguilar-Gaxiola, J. Alonso, R. Bruffaerts, P. de Jonge, Z. Liu, J. M. Caldas-de-Almeida, S. O’Neill, M. C. Viana, A. O. Al-Hamzawi, M. C. Angermeyer, C. Benjet, R. de Graaf, F. Ferry, V. Kovess-Masfety, D. Levinson, G. de Girolamo, S. Florescu, C, Hu, N. Kawakami, J. M. Haro, M. Piazza, J. Posada-Villa, B. J. Wojtyniak, M. Xavier, C. C. W. Lim, R. C. Kessler, and K. M. Scott. 2014. Associations between mental disorders and subsequent onset of hypertension. Gen. Hosp. Psychiat. 36, 2 (2014), 142–149.
[205]
A. Steptoe and C. Vögele. 1992. Individual differences in the perception of bodily sensations: The role of trait anxiety and coping style. Behav. Res. Therap. 30, 6 (1992), 597–607.
[206]
D. L. Sturnieks, K. Delbaere, M. A. Brodie, and S. R. Lord. 2016. The influence of age, anxiety and concern about falling on postural sway when standing at an elevated level. Hum. Movem. Sci. 49 (2016), 206–215.
[207]
L. J. Summerfeldt and M. M. Antony. 2002. Structured and semistructured diagnostic interviews. Handbook of assessment and treatment planning for psychological disorders. The Guilford Press, 3–37.
[208]
P. Sylvers, S. O. Lilienfeld, and J. L. LaPrairie. 2011. Differences between trait fear and trait anxiety: Implications for psychopathology. Clin. Psychol. Rev. 31, 1 (2011), 122–137.
[209]
J. F. Thayer. 2017. A neurovisceral integration model of heart rate variability. Reference Module in Neuroscience and Biobehavioral Psychology, Elsevier, 1041–1047.
[210]
A. Thieme, D. Belgrave, and G. Doherty. 2020. Machine learning in mental health: A systematic review of the HCI literature to support the development of effective and implementable ML systems. ACM Trans. Comput.-hum. Interact. 27, 5 (2020), 1–53.
[211]
A. Tiwari, R. Cassani, et al. 2019. A comparative study of stress and anxiety estimation in ecological settings using a smart-shirt and a smart-bracelet. In 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2213–2216.
[212]
A. Tiwari, S. Narayanan, and T. H. Falk. 2019. Breathing rate complexity features for “in-the-wild” stress and anxiety measurement. In 27th European Signal Processing Conference (EUSIPCO). IEEE, 1–5.
[213]
A. Tiwari, S. Narayanan, and T. H. Falk. 2019. Stress and anxiety measurement “in-the-wild” using quality-aware multi-scale hrv features. In 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 7056–7059.
[214]
D. F. Tolin, C. Gilliam, B. M. Wootton, W. Bowe, L. B. Bragdon, E. Davis, S. E. Hannan, S. A. Steinman, B. Worden, and L. S. Hallion. 2018. Psychometric properties of a structured diagnostic interview for DSM-5 anxiety, mood, and obsessive-compulsive and related disorders. Assessment (Odessa, Fla.) 25, 1 (2018), 3–13.
[215]
A. Vaidyam, J. Halamka, and J. Torous. 2022. Enabling research and clinical use of patient-generated health data (the mindLAMP platform): Digital phenotyping study. JMIR mHealth uHealth 10, 1 (2022), e30557–e30557.
[216]
S. van Halem, Eeske Van R, S. van Halem, E. van Roekel, L. Kroencke, N. Kuper, and J. Denissen. 2020. Moments that matter? On the complexity of using triggers based on skin conductance to sample arousing events within an experience sampling framework. Eur. J. Personal. 34, 5 (2020), 794–807.
[217]
C. Villada, V. Hidalgo, M. Almela, and A. Salvador. 2018. Assessing performance on an evaluated speaking task: The role of self-efficacy, anxiety, and cardiac autonomic reactivity. J. Psychophysiol. 32, 2 (2018), 64–74.
[218]
P. Waxer. 1977. Nonverbal cues for anxiety: An examination of emotional leakage. J. Abnorm. Psychol. 86, 3 (1977), 306–314.
[219]
J. W. Weeks, R. G. Heimberg, and R. Heuer. 2011. Exploring the role of behavioral submissiveness in social anxiety. J. Soc. Clin. Psychol. 30, 3 (2011), 217–249.
[220]
J. W. Weeks, A. N. Howell, A. Srivastava, and P. R. Goldin. 2019. “Fear guides the eyes of the beholder”: Assessing gaze avoidance in social anxiety disorder via covert eye tracking of dynamic social stimuli. J. Anxiet. Disord. 65 (2019), 56–63.
[221]
J. W. Weeks, C. Lee, A. R. Reilly, A. N. Howell, C. France, J. M. Kowalsky, and A. Bush. 2012. “The Sound of Fear”: Assessing vocal fundamental frequency as a physiological indicator of social anxiety disorder. J. Anxiet. Disord. 26, 8 (2012), 811–822.
[222]
J. W. Weeks, A. Srivastav, A. N. Howell, and A. R. Menatti. 2016. “Speaking more than words”: Classifying men with social anxiety disorder via vocal acoustic analyses of diagnostic interviews. J. Psychopathol. Behav. Assess. 38, 1 (2016), 30–41.
[223]
W. Wen, G. Liu, Z. Mao, W. Huang, X. Zhang, H. Hu, J. Yang, and W. Jia. 2020. Toward constructing a real-time social anxiety evaluation system: Exploring effective heart rate features. IEEE Trans. Affect. Comput. 11, 1 (2020), 100–110.
[224]
E. C. White and B. M. Graham. 2018. Low estradiol is linked to increased skin conductance, but not subjective anxiety or affect, in response to an impromptu speech task. Psychoneuroendocrinology 98 (2018), 30–38.
[225]
F. H. Wilhelm, R. Gevirtz, and W. T. Roth. 2001. Respiratory dysregulation in anxiety, functional cardiac, and pain disorders: Assessment, phenomenology, and treatment. Behav. Modif. 25, 4 (2001), 513–545.
[226]
V. Wise, A. C. McFarlane, C. R. Clark, and M. Battersby. 2011. An integrative assessment of brain and body function “at rest” in panic disorder: A combined quantitative EEG/autonomic function study. Int. J. Psychophys. 79, 2 (2011), 155–165.
[227]
A. S. Won, B. Perone, M. Friend, and J. N. Bailenson. 2016. Identifying anxiety through tracked head movements in a virtual classroom. Cyberpsychol., Behav. Soc. Netw. 19, 6 (2016), 380–387.
[228]
T. Wörtwein, L. Morency, and S. Scherer. 2015. Automatic assessment and analysis of public speaking anxiety: A virtual audience case study. In International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, 187–193.
[229]
M. Yadav, Md Nazmus Sakib, et al. 2020. Exploring individual differences of public speaking anxiety in real-life and virtual presentations. IEEE Trans. Affect. Comput. 13, 3 (2020), 1–1.
[230]
T. Yamada, A. Inoue, K. Mafune, H. Hiro, and S. Nagata. 2017. Recovery of percent vital capacity by breathing training in patients with panic disorder and impaired diaphragmatic breathing. Behav. Modif. 41, 5 (2017), 665–682.
[231]
O. Yazdy. 1985. Comparison between Normals and Mentally Retarded on Postural Deviations in the Spinal Column. Ph.D. Dissertation. Oklahoma State University.
[232]
J. Zhang, Z. Yin, P. Chen, and S. Nichele. 2020. Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Inf. Fusion 59 (2020), 103–126.
[233]
M. D. Zbancioc and S. M. Feraru. 2015. A study about the automatic recognition of the anxiety emotional state using Emo-DB. In E-Health and Bioengineering Conference (EHB). IEEE, 1–4.
[234]
X. Zhang, W. Wen, G. Liu, and H. Hu. 2016. Recognition of public speaking anxiety on the recurrence quantification analysis of GSR signals. In 6th International Conference on Information Science and Technology (ICIST). IEEE, 533–538.
[235]
Y. Zhang, B. Zhou, J. Qiu, L. Zhang, and Z. Zou. 2020. Heart rate variability changes in patients with panic disorder. J. Affect. Disord. 267 (2020), 297–306.
[236]
N. Zhao, Z. Zhang, Y. Wang, J. Wang, B. Li, T. Zhu, and Y. Xiang. 2019. See your mental state from your walk: Recognizing anxiety and depression through Kinect-recorded gait data. PloS One 14, 5 (2019), e0216591.
[237]
N. Zheng, Z. Liu, P. Ren, Y. Ma, S. Chen, S. Yu, J. Xue, B. Chen, and F. Wang. 2017. Hybrid-augmented intelligence: Collaboration and cognition. Front. Inf. Technol. Electron. Eng. 18, 2 (2017), 153–179.
[238]
S. Zuboff. 2019. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power (first ed.). PublicAffairs. 2018003901

Cited By

View all
  • (2025)Expert opinion elicitation for assisting deep learning based Lyme disease classifier with patient dataInternational Journal of Medical Informatics10.1016/j.ijmedinf.2024.105682193(105682)Online publication date: Jan-2025
  • (2024)Editorial: Multimodal interaction technologies for mental well-beingFrontiers in Computer Science10.3389/fcomp.2024.14127276Online publication date: 30-Apr-2024
  • (2024)Clinical Implication of Maumgyeol Basic Biotypes–Electroencephalography- and Photoplethysmogram-Based Bwave State InventoryPsychiatry Investigation10.30773/pi.2023.038121:5(528-538)Online publication date: 25-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Computing for Healthcare
ACM Transactions on Computing for Healthcare  Volume 3, Issue 4
October 2022
331 pages
EISSN:2637-8051
DOI:10.1145/3544003
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 November 2022
Online AM: 17 August 2022
Accepted: 07 August 2022
Revised: 06 July 2022
Received: 18 July 2021
Published in HEALTH Volume 3, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Anxiety
  2. multimodal analytics
  3. physiological and behavioral data
  4. ubiquitous technology

Qualifiers

  • Survey
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)415
  • Downloads (Last 6 weeks)72
Reflects downloads up to 10 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Expert opinion elicitation for assisting deep learning based Lyme disease classifier with patient dataInternational Journal of Medical Informatics10.1016/j.ijmedinf.2024.105682193(105682)Online publication date: Jan-2025
  • (2024)Editorial: Multimodal interaction technologies for mental well-beingFrontiers in Computer Science10.3389/fcomp.2024.14127276Online publication date: 30-Apr-2024
  • (2024)Clinical Implication of Maumgyeol Basic Biotypes–Electroencephalography- and Photoplethysmogram-Based Bwave State InventoryPsychiatry Investigation10.30773/pi.2023.038121:5(528-538)Online publication date: 25-May-2024
  • (2024)An Empirical Study on Social Anxiety in a Virtual Environment through Mediating Variables and Multiple Sensor DataProceedings of the ACM on Human-Computer Interaction10.1145/36869778:CSCW2(1-24)Online publication date: 8-Nov-2024
  • (2024) How Can Near‐Infrared Spectroscopy ( NIRS ) Help Understanding of the Psychotherapy Process? A Scoping Review of Therapeutic Interactions Japanese Psychological Research10.1111/jpr.12561Online publication date: 13-Oct-2024
  • (2024)Assessing learners’ English public speaking anxiety with multimodal deep learning technologiesComputer Assisted Language Learning10.1080/09588221.2024.2351129(1-29)Online publication date: 11-May-2024
  • (2024)Coping with emotional pain: An experimental comparison of acceptance vs. avoidance copingJournal of Contextual Behavioral Science10.1016/j.jcbs.2024.10082033(100820)Online publication date: Jul-2024
  • (2024)Personalized virtual reality exposure for panic disorder and agoraphobia: A preliminary neurophysiological studyComprehensive Psychiatry10.1016/j.comppsych.2023.152447129(152447)Online publication date: Feb-2024
  • (2024)Automated anxiety detection using probabilistic binary pattern with ECG signalsComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2024.108076247(108076)Online publication date: Apr-2024
  • (2023)Detecting Social Contexts from Mobile Sensing Indicators in Virtual Interactions with Socially Anxious IndividualsProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36109167:3(1-26)Online publication date: 27-Sep-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media