Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

The multiple roles that IPv6 addresses can play in today's internet

Published: 06 September 2022 Publication History

Abstract

The Internet use IP addresses to identify and locate network interfaces of connected devices. IPv4 was introduced more than 40 years ago and specifies 32-bit addresses. As the Internet grew, available IPv4 addresses eventually became exhausted more than ten years ago. The IETF designed IPv6 with a much larger addressing space consisting of 128-bit addresses, pushing back the exhaustion problem much further in the future.
In this paper, we argue that this large addressing space allows reconsidering how IP addresses are used and enables improving, simplifying and scaling the Internet. By revisiting the IPv6 addressing paradigm, we demonstrate that it opens up several research opportunities that can be investigated today. Hosts can benefit from several IPv6 addresses to improve their privacy, defeat network scanning, improve the use of several mobile access network and their mobility as well as to increase the performance of multicore servers. Network operators can solve the multihoming problem more efficiently and without putting a burden on the BGP RIB, implement Function Chaining with Segment Routing, differentiate routing inside and outside a domain given particular network metrics and offer more fine-grained multicast services.

References

[1]
Aditya Akella, Bruce Maggs, Srinivasan Seshan, Anees Shaikh, and Ramesh Sitaraman. 2003. A measurement-based analysis of multihoming. In SIGCOMM'03. 353--364.
[2]
Mark Allman, Vern Paxson, and Jeff Terrell. 2007. A brief history of scanning. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement. 77--82.
[3]
F. Baker, C. Bowers, and J. Linkova. 2019. Enterprise Multihoming using Provider-Assigned IPv6 Addresses without Network Prefix Translation: Requirements and Solutions. RFC 8678 (Informational).
[4]
Paul Baran. 2002. The beginnings of packet switching: some underlying concepts. IEEE Communications Magazine 40, 7 (2002), 42--48.
[5]
Tom Barbette. 2022. WRK-MultiProtocol. Retrieved June 1, 2022 from https://github.com/tbarbette/wrk-quic
[6]
Tom Barbette, Georgios P Katsikas, Gerald Q Maguire Jr, and Dejan Kostić. 2019. RSS++ load and state-aware receive side scaling. In Proceedings of the 15th international conference on emerging networking experiments and technologies. 318--333.
[7]
Tom Barbette and Nikita Tyunyayev. 2022. picoquic-dpdk. Retrieved June 1, 2022 from https://github.com/IPNetworkingLab/picoquic-dpdk
[8]
Paul Barham, Steven Hand, Rebecca Isaacs, Paul Jardetzky, Richard Mortier, and Timothy Roscoe. 2002. Techniques for lightweight concealment and authentication in IP networks. Intel Research Berkeley. July (2002).
[9]
Steven M Bellovin. 1989. Security problems in the TCP/IP protocol suite. ACM SIGCOMM Computer Communication Review 19, 2 (1989), 32--48.
[10]
Robert Beverly, Ramakrishnan Durairajan, David Plonka, and Justin P Rohrer. 2018. In the IP of the beholder: Strategies for active IPv6 topology discovery. In Proceedings of the Internet Measurement Conference 2018. 308--321.
[11]
N. Bhaskar, A. Gall, J. Lingard, and S. Venaas. 2008. Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM). RFC 5059 (Proposed Standard).
[12]
S. Bradner and A. Mankin. 1993. IP: Next Generation (IPng) White Paper Solicitation. RFC 1550 (Informational).
[13]
R. Bush. 2017. BGPsec Operational Considerations. RFC 8207 (Best Current Practice).
[14]
CAIDA AS Rank 2022. CAIDA AS Rank. Retrieved May 31, 2022 from https://as-rank.caida.org/
[15]
Vinton Cerf and Robert Kahn. 1974. A protocol for packet network intercommunication. IEEE Transactions on communications 22, 5 (1974), 637--648.
[16]
Luca Cittadini, Wolfgang Mühlbauer, Steve Uhlig, Randy Bush, Pierre Francois, and Olaf Maennel. 2010. Evolution of Internet address space deaggregation: myths and reality. IEEE Journal on Selected Areas in Communications 28, 8 (2010), 1238--1249.
[17]
Francois Clad, Xiaohu Xu, Clarence Filsfils, Daniel Bernier, Cheng Li, Bruno Decraene, Shaowen Ma, Chaitanya Yadlapalli, Wim Henderickx, and Stefano Salsano. 2021. Service Programming with Segment Routing. Internet-Draft draft-ietf-spring-sr-service-programming-05. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-spring-sr-service-programming-05 Work in Progress.
[18]
Stephen D Crocker. 2019. The ARPAnet and its impact on the state of networking. Computer 52, 10 (2019), 14--23.
[19]
Andrei Croitoru, Dragos Niculescu, and Costin Raiciu. 2015. Towards wifi mobility without fast handover. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15). 219--234.
[20]
Quentin De Coninck and Olivier Bonaventure. 2017. Multipath QUIC: Design and evaluation. In Proceedings of the 13th international conference on emerging networking experiments and technologies. 160--166.
[21]
Cedric De Launois, Bruno Quoitin, and Olivier Bonaventure. 2006. Leveraging network performance with IPv6 multihoming and multiple provider-dependent aggregatable prefixes. Computer Networks 50, 8 (2006), 1145--1157.
[22]
S. Deering and R. Hinden. 1998. Internet Protocol, Version 6 (IPv6) Specification. RFC 2460 (Draft Standard).
[23]
Fabien Duchene and Olivier Bonaventure. 2017. Making Multipath TCP friendlier to load balancers and anycast. In 2017 IEEE 25th International Conference on Network Protocols (ICNP). IEEE, 1--10.
[24]
Zakir Durumeric, Eric Wustrow, and J Alex Halderman. 2013. ZMap: Fast Internet-wide Scanning and Its Security Applications. In 22nd USENIX Security Symposium (USENIX Security 13). 605--620.
[25]
K. Egevang and P. Francis. 1994. The IP Network Address Translator (NAT). RFC 1631 (Informational).
[26]
D. Farinacci and Y. Cai. 2006. Anycast-RP Using Protocol Independent Multicast (PIM). RFC 4610 (Proposed Standard).
[27]
Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. 2003. Guidelines for interdomain traffic engineering. ACM SIGCOMM Computer Communication Review 33, 5 (2003), 19--30.
[28]
B. Fenner, M. Handley, H. Holbrook, I. Kouvelas, R. Parekh, Z. Zhang, and L. Zheng. 2016. Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised). RFC 7761 (Internet Standard).
[29]
C. Filsfils (Ed.), P. Camarillo (Ed.), J. Leddy, D. Voyer, S. Matsushima, and Z. Li. 2021. Segment Routing over IPv6 (SRv6) Network Programming. RFC 8986 (Proposed Standard).
[30]
C. Filsfils (Ed.), S. Previdi (Ed.), L. Ginsberg, B. Decraene, S. Litkowski, and R. Shakir. 2018. Segment Routing Architecture. RFC 8402 (Proposed Standard).
[31]
A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. 2013. TCP Extensions for Multipath Operation with Multiple Addresses. RFC 6824 (Experimental).
[32]
A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch. 2020. TCP Extensions for Multipath Operation with Multiple Addresses. RFC 8684 (Proposed Standard).
[33]
Kensuke Fukuda and John Heidemann. 2018. Who knocks at the IPv6 door? detecting IPv6 scanning. In Proceedings of the Internet Measurement Conference 2018. 231--237.
[34]
Oliver Gasser, Quirin Scheitle, Pawel Foremski, Qasim Lone, Maciej Korczyński, Stephen D Strowes, Luuk Hendriks, and Georg Carle. 2018. Clusters in the expanse: Understanding and unbiasing IPv6 hitlists. In Proceedings of the Internet Measurement Conference 2018. 364--378.
[35]
F. Gont, S. Krishnan, T. Narten, and R. Draves. 2021. Temporary Address Extensions for Stateless Address Autoconfiguration in IPv6. RFC 8981 (Proposed Standard).
[36]
J. Halpern (Ed.) and C. Pignataro (Ed.). 2015. Service Function Chaining (SFC) Architecture. RFC 7665 (Informational).
[37]
M. Handley, C. Perkins, and E. Whelan. 2000. Session Announcement Protocol. RFC 2974 (Experimental).
[38]
R. Hinden and S. Deering. 2006. IP Version 6 Addressing Architecture. RFC 4291 (Draft Standard).
[39]
R. Hinden (Ed.) and S. Deering (Ed.). 1995. IP Version 6 Addressing Architecture. RFC 1884 (Historic).
[40]
Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razaghpanah, Thomas Jost, Narseo Vallina-Rodriguez, and Oliver Hohlfeld. 2020. Tracking the deployment of TLS 1.3 on the Web: A story of experimentation and centralization. ACM SIGCOMM Computer Communication Review 50, 3 (2020), 3--15.
[41]
Geoff Huston. 2017. BGP more specifics: routing vandalism or useful? (June 2017). https://blog.apnic.net/2017/06/26/bgp-specifics-routing-vandalism-useful/.
[42]
Geoff Huston. 2022. BGP in 2021 - The BGP Table. (Jan 2022). https://www.potaroo.net/ispcol/2022-01/bgp2021.html.
[43]
IEEE. [n.d.]. Guidelines for 64-bit Global Identifier (EUI-64) Registration Authority.
[44]
Intel. 2016. Receive-Side Scaling (RSS). Retrieved May 18, 2022 from https://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
[45]
J. Iyengar (Ed.) and M. Thomson (Ed.). 2021. QUIC: A UDP-Based Multiplexed and Secure Transport. RFC 9000 (Proposed Standard).
[46]
Said Jawad Saidi, Oliver Gasser, and Georgios Smaragdakis. 2022. One Bad Apple Can Spoil Your IPv6 Privacy. ACM SIGCOMM Computer Communication Review 52, 2 (2022).
[47]
Siyuan Jia, Matthew Luckie, Bradley Huffaker, Ahmed Elmokashfi, Emile Aben, Kimberly Claffy, and Amogh Dhamdhere. 2019. Tracking the deployment of IPv6: Topology, routing and performance. Computer Networks 165 (2019), 106947.
[48]
Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M Voelker, and Amin Vahdat. 2012. Chronos: Predictable low latency for data center applications. In Proceedings of the Third ACM Symposium on Cloud Computing. 1--14.
[49]
Georgios P Katsikas, Tom Barbette, Dejan Kostic, Rebecca Steinert, and Gerald Q Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the Underlying Hardware. In Proc. USENIX Symposium on Networked Systems Design and Implementation (NSDI). 171--186.
[50]
Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G Paterson, Narseo Vallina-Rodriguez, and Juan Caballero. 2018. Coming of age: A longitudinal study of tls deployment. In Proceedings of the Internet Measurement Conference 2018. 415--428.
[51]
J. Laganier and L. Eggert. 2016. Host Identity Protocol (HIP) Rendezvous Extension. RFC 8004 (Proposed Standard).
[52]
Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017. The quic transport protocol: Design and internet-scale deployment. In Proceedings of the conference of the ACM special interest group on data communication. 183--196.
[53]
M. Lepinski (Ed.) and K. Sriram (Ed.). 2017. BGPsec Protocol Specification. RFC 8205 (Proposed Standard).
[54]
Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure, Christian Huitema, and Mirja Kühlewind. 2022. Multipath Extension for QUIC. Internet-Draft draft-ietf-quic-multipath-01. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-01 Work in Progress.
[55]
Michael Luby, Lorenzo Vicisano, Jim Gemmell, Luigi Rizzo, M Handley, and Jon Crowcroft. 2002. The use of forward error correction (FEC) in reliable multicast. Technical Report. RFC 3453, December.
[56]
Zhihong Luo, Silvery Fu, Mark Theis, Shaddi Hasan, Sylvia Ratnasamy, and Scott Shenker. 2021. Democratizing cellular access with CellBricks. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 626--640.
[57]
R. Moskowitz (Ed.), T. Heer, P. Jokela, and T. Henderson. 2015. Host Identity Protocol Version 2 (HIPv2). RFC 7401 (Proposed Standard).
[58]
Austin Murdock, Frank Li, Paul Bramsen, Zakir Durumeric, and Vern Paxson. 2017. Target generation for internet-wide IPv6 scanning. In Proceedings of the 2017 Internet Measurement Conference. 242--253.
[59]
Ryo Nakamura, Kazuki Shimizu, Teppei Kamata, and Cristel Pelsser. 2022. A First Measurement with BGP Egress Peer Engineering. In Passive and Active Measurement - 23th International Conference, PAM 2022.
[60]
T. Narten and R. Draves. 2001. Privacy Extensions for Stateless Address Auto-configuration in IPv6. RFC 3041 (Proposed Standard).
[61]
T. Narten, R. Draves, and S. Krishnan. 2007. Privacy Extensions for Stateless Address Autoconfiguration in IPv6. RFC 4941 (Draft Standard).
[62]
Mehdi Nikkhah and Roch Guérin. 2015. Migrating the internet to IPv6: An exploration of the when and why. IEEE/ACM Transactions on Networking 24, 4 (2015), 2291--2304.
[63]
Jörg Nonnenmacher and Ernst W Biersack. 1996. Reliable multicast: Where to use FEC. In International Workshop on Protocols for High Speed Networks. Springer, 134--148.
[64]
Porapat Ongkanchana, Romain Fontugne, Hiroshi Esaki, Job Snijders, and Emile Aben. 2021. Hunting BGP Zombies in the Wild. In Proceedings of the Applied Networking Research Workshop (Virtual Event, USA) (ANRW '21). Association for Computing Machinery, New York, NY, USA, 1--7.
[65]
Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T Morris. 2012. Improving network connection locality on multicore systems. In Proceedings of the 7th ACM european conference on Computer Systems. 337--350.
[66]
J. Postel. 1981. Internet Protocol. RFC 791 (Internet Standard).
[67]
J. Postel. 1981. Transmission Control Protocol. RFC 793 (Internet Standard).
[68]
Peter Psenak, Shraddha Hegde, Clarence Filsfils, Ketan Talaulikar, and Arkadiy Gulko. 2022. IGP Flexible Algorithm. Internet-Draft draft-ietf-lsr-flex-algo-20. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-lsr-flex-algo-20 Work in Progress.
[69]
P. Quinn (Ed.) and T. Nadeau (Ed.). 2015. Problem Statement for Service Function Chaining. RFC 7498 (Informational).
[70]
Y. Rekhter (Ed.), T. Li (Ed.), and S. Hares (Ed.). 2006. A Border Gateway Protocol 4 (BGP-4). RFC 4271 (Draft Standard).
[71]
RIPE RIS 2022. The RIPE Routing Information Services. Retrieved May 31, 2022 from http://www.ris.ripe.net.
[72]
A S M Rizvi and John Heidemann. 2022. Chhoyhopper: A Moving Target Defense with IPv6. In 4th Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb 2022).
[73]
Luigi Rizzo. 2000. pgmcc: a TCP-friendly single-rate multicast congestion control scheme. ACM SIGCOMM Computer Communication Review 30, 4 (2000), 17--28.
[74]
Jerome H Saltzer, David P Reed, and David D Clark. 1984. End-to-end arguments in system design. ACM Transactions on Computer Systems (TOCS) 2, 4 (1984), 277--288.
[75]
P. Savola and B. Haberman. 2004. Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address. RFC 3956 (Proposed Standard).
[76]
Joao Luis Sobrinho, Laurent Vanbever, Franck Le, and Jennifer Rexford. 2014. Distributed Route Aggregation on the Global Network. In ACM CoNEXT 2014. Sydney, Australia.
[77]
R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson. 2000. Stream Control Transmission Protocol. RFC 2960 (Proposed Standard).
[78]
Florian Streibelt, Franziska Lichtblau, Robert Beverly, Anja Feldmann, Cristel Pelsser, Georgios Smaragdakis, and Randy Bush. 2018. BGP communities: Even more worms in the routing can. In Proceedings of the Internet Measurement Conference 2018. 279--292.
[79]
M. Tuexen, R. Stewart, R. Jesup, and S. Loreto. 2017. Datagram Transport Layer Security (DTLS) Encapsulation of SCTP Packets. RFC 8261 (Proposed Standard).
[80]
Pier Luigi Ventre, Stefano Salsano, Marco Polverini, Antonio Cianfrani, Ahmed Abdelsalam, Clarence Filsfils, Pablo Camarillo, and Francois Clad. 2020. Segment Routing: a comprehensive survey of research activities, standardization efforts, and implementation results. IEEE Communications Surveys & Tutorials 23, 1 (2020), 182--221.
[81]
Tobias Viernickel, Alexander Froemmgen, Amr Rizk, Boris Koldehofe, and Ralf Steinmetz. 2018. Multipath QUIC: A deployable multipath transport protocol. In 2018 IEEE International Conference on Communications (ICC). IEEE, 1--7.
[82]
Jörg Widmer and Mark Handley. 2001. Extending equation-based congestion control to multicast applications. In Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications. 275--285.
[83]
IJ. Wijnands (Ed.), E. Rosen (Ed.), A. Dolganow, T. Przygienda, and S. Aldrin. 2017. Multicast Using Bit Index Explicit Replication (BIER). RFC 8279 (Proposed Standard).
[84]
IJ. Wijnands (Ed.), E. Rosen (Ed.), A. Dolganow, J. Tantsura, S. Aldrin, and I. Meilik. 2018. Encapsulation for Bit Index Explicit Replication (BIER) in MPLS and Non-MPLS Networks. RFC 8296 (Proposed Standard).
[85]
Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure. 2018. Leveraging eBPF for programmable network functions with IPv6 Segment Routing. In Proceedings of the 14th International Conference on emerging Networking EXperiments and Technologies. 67--72.

Cited By

View all
  • (2024)Unconsidered Installations: Discovering IoT Deployments in the IPv6 InternetNOMS 2024-2024 IEEE Network Operations and Management Symposium10.1109/NOMS59830.2024.10574963(1-8)Online publication date: 6-May-2024
  • (2023)Using RFID in the Engineering of Interactive Software Systems: A Systematic MappingProceedings of the ACM on Human-Computer Interaction10.1145/35932357:EICS(1-37)Online publication date: 19-Jun-2023
  • (2022)Wireless Communication-Based Coexistence of IPv4 and IPv6 for IoT Devices2022 International Conference on Knowledge Engineering and Communication Systems (ICKES)10.1109/ICKECS56523.2022.10060098(1-7)Online publication date: 28-Dec-2022

Index Terms

  1. The multiple roles that IPv6 addresses can play in today's internet

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM SIGCOMM Computer Communication Review
      ACM SIGCOMM Computer Communication Review  Volume 52, Issue 3
      July 2022
      27 pages
      ISSN:0146-4833
      DOI:10.1145/3561954
      Issue’s Table of Contents
      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 06 September 2022
      Published in SIGCOMM-CCR Volume 52, Issue 3

      Check for updates

      Author Tags

      1. IP address
      2. IPv6
      3. multihoming
      4. multipath
      5. network service

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)130
      • Downloads (Last 6 weeks)12
      Reflects downloads up to 01 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Unconsidered Installations: Discovering IoT Deployments in the IPv6 InternetNOMS 2024-2024 IEEE Network Operations and Management Symposium10.1109/NOMS59830.2024.10574963(1-8)Online publication date: 6-May-2024
      • (2023)Using RFID in the Engineering of Interactive Software Systems: A Systematic MappingProceedings of the ACM on Human-Computer Interaction10.1145/35932357:EICS(1-37)Online publication date: 19-Jun-2023
      • (2022)Wireless Communication-Based Coexistence of IPv4 and IPv6 for IoT Devices2022 International Conference on Knowledge Engineering and Communication Systems (ICKES)10.1109/ICKECS56523.2022.10060098(1-7)Online publication date: 28-Dec-2022

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media