Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Synthesizing axiomatizations using logic learning

Published: 31 October 2022 Publication History

Abstract

Axioms and inference rules form the foundation of deductive systems and are crucial in the study of reasoning with logics over structures. Historically, axiomatizations have been discovered manually with much expertise and effort. In this paper we show the feasibility of using synthesis techniques to discover axiomatizations for different classes of structures, and in some contexts, automatically prove their completeness. For evaluation, we apply our technique to find axioms for (1) classes of frames in modal logic characterized in first-order logic and (2) the class of language models with regular operations.

References

[1]
Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In 2013 Formal Methods in Computer-Aided Design. IEEE, Portland, OR, USA. 1–8. https://doi.org/10.1109/FMCAD.2013.6679385
[2]
Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations for Networks. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). Association for Computing Machinery, New York, NY, USA. 113–126. isbn:9781450325448 https://doi.org/10.1145/2535838.2535862
[3]
Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV’11). Springer-Verlag, Berlin, Heidelberg. 171–177. isbn:9783642221095 https://doi.org/10.1007/978-3-642-22110-1_14
[4]
Patrick Blackburn, Johan F. A. K. van Benthem, and Frank Wolter. 2006. Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning). Elsevier Science Inc., USA. isbn:0444516905
[5]
2007. Handbook of Modal Logic, Patrick Blackburn, J. F. A. K. van Benthem, and Frank Wolter (Eds.) (Studies in logic and practical reasoning, Vol. 3). Elsevier, Amsterdam, Netherlands. isbn:978-0-444-51690-9 https://doi.org/10.1016/S1570-2464(07)80002-4
[6]
Bruno Buchberger, Adrian Crǎciun, Tudor Jebelean, Laura Kovács, Temur Kutsia, Koji Nakagawa, Florina Piroi, Nikolaj Popov, Judit Robu, Markus Rosenkranz, and Wolfgang Windsteiger. 2006. Theorema: Towards computer-aided mathematical theory exploration. Journal of Applied Logic, 4, 4 (2006), 470–504. issn:1570-8683 https://doi.org/10.1016/j.jal.2005.10.006
[7]
Edmund M. Clarke and E. Allen Emerson. 1982. Design and synthesis of synchronization skeletons using branching time temporal logic. In Logics of Programs, Dexter Kozen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 52–71. isbn:978-3-540-39047-3
[8]
John H. Conway. 1971. Regular algebra and finite machines. Chapman and Hall, London, UK. isbn:9780412106200
[9]
Loris D’Antoni, Qinheping Hu, Jinwoo Kim, and Thomas Reps. 2021. Programmable Program Synthesis. In Computer Aided Verification, Alexandra Silva and K. Rustan M. Leino (Eds.). Springer International Publishing, Cham. 84–109. isbn:978-3-030-81685-8 https://doi.org/10.1007/978-3-030-81685-8_4
[10]
Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the 14 th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’08). 4963, Springer, Budapest, Hungary. 337–340. https://doi.org/10.1007/978-3-540-78800-3_24
[11]
Sushant Dinesh, Grant Garrett-Grossman, and Christopher W. Fletcher. 2022. SynthCT: Towards Portable Constant-Time Code. In 29th Annual Network and Distributed System Security Symposium (NDSS ’22). The Internet Society, San Diego, CA, USA. 1–18. https://doi.org/10.14722/ndss.2022.24215
[12]
Isabela Drâmnesc, Tudor Jebelean, and Sorin Stratulat. 2015. Theory exploration of binary trees. In 2015 IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY). IEEE, Subotica, Serbia. 139–144. https://doi.org/10.1109/SISY.2015.7325367
[13]
Isabela Drămnesc and Tudor Jebelean. 2012. Theory Exploration in Theorema: Case Study on Lists. In 2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE, Timisoara, Romania. 421–426. https://doi.org/10.1109/SACI.2012.6250041
[14]
Jay Loren Gischer. 1985. Partial Orders and the Axiomatic Theory of Shuffle (Pomsets). Ph. D. Dissertation. Stanford University. Stanford, CA, USA. AAI8506191
[15]
Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. SIGPLAN Not., 46, 1 (2011), jan, 317–330. issn:0362-1340 https://doi.org/10.1145/1925844.1926423
[16]
Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. 2021. Finding Invariants of Distributed Systems: It’ s a Small (Enough) World After All. In 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’21). USENIX Association, Boston, MA, USA. 115–131. isbn:978-1-939133-21-2 https://www.usenix.org/conference/nsdi21/presentation/hance
[17]
Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016. Stratified Synthesis: Automatically Learning the X86-64 Instruction Set. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). Association for Computing Machinery, New York, NY, USA. 237–250. isbn:9781450342612 https://doi.org/10.1145/2908080.2908121
[18]
Wilfrid Hodges. 1993. Model Theory. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511551574
[19]
Wilfrid Hodges. 1997. A Shorter Model Theory. Cambridge University Press, USA. isbn:0521587131
[20]
John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., USA. isbn:0321455363
[21]
Moa Johansson. 2017. Automated Theory Exploration for Interactive Theorem Proving:. In Interactive Theorem Proving, Mauricio Ayala-Rincón and César A. Muñoz (Eds.). Springer International Publishing, Cham. 1–11. isbn:978-3-319-66107-0
[22]
Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. 2014. Hipster: Integrating Theory Exploration in a Proof Assistant. In Intelligent Computer Mathematics, Stephen M. Watt, James H. Davenport, Alan P. Sexton, Petr Sojka, and Josef Urban (Eds.). Springer International Publishing, Cham. 108–122. isbn:978-3-319-08434-3 https://doi.org/10.1007/978-3-319-08434-3_9
[23]
Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps. 2021. Semantics-Guided Synthesis. Proc. ACM Program. Lang., 5, POPL (2021), Article 30, jan, 32 pages. https://doi.org/10.1145/3434311
[24]
S. C. Kleene. 1956. Representation of Events in Nerve Nets and Finite Automata. Princeton University Press, Princeton, NJ, USA. 3–42.
[25]
Jason R. Koenig, Oded Padon, Neil Immerman, and Alex Aiken. 2020. First-Order Quantified Separators. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’20). Association for Computing Machinery, New York, NY, USA. 703–717. isbn:9781450376136 https://doi.org/10.1145/3385412.3386018
[26]
Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem Proving and Vampire. In Computer Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 1–35. isbn:978-3-642-39799-8
[27]
D. Kozen. 1994. A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. Information and Computation, 110, 2 (1994), 366–390. issn:0890-5401 https://doi.org/10.1006/inco.1994.1037
[28]
Paul Krogmeier, Zhengyao Lin, Adithya Murali, and P. Madhusudan. 2022. LAS Framework Implementation. https://github.com/zhengyao-lin/fol-synthesis/tree/oopsla22
[29]
Paul Krogmeier, Zhengyao Lin, Adithya Murali, and P. Madhusudan. 2022. Synthesizing Axiomatizations using Logic Learning. https://doi.org/10.5281/zenodo.7072506
[30]
Paul Krogmeier and P. Madhusudan. 2022. Learning Formulas in Finite Variable Logics. Proc. ACM Program. Lang., 6, POPL (2022), Article 10, jan, 28 pages. https://doi.org/10.1145/3498671
[31]
Kenneth Kunen. 1992. Single axioms for groups. Journal of Automated Reasoning, 9, 3 (1992), 01 Dec, 291–308. issn:1573-0670 https://doi.org/10.1007/BF00245293
[32]
Pat Langley. 1981. Data-driven discovery of physical laws. Cognitive Science, 5, 1 (1981), 31–54. issn:0364-0213 https://doi.org/10.1016/S0364-0213(81)80025-0
[33]
F. William Lawvere. 1969. Adjointness in Foundations. Dialectica, 23, 3/4 (1969), 281–296. issn:00122017, 17468361 http://www.jstor.org/stable/42969800
[34]
Christof Löding, P. Madhusudan, and Daniel Neider. 2016. Abstract Learning Frameworks for Synthesis. In Tools and Algorithms for the Construction and Analysis of Systems, Marsha Chechik and Jean-François Raskin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 167–185. isbn:978-3-662-49674-9 https://doi.org/10.1007/978-3-662-49674-9_10
[35]
Christof Löding, P. Madhusudan, and Lucas Peña. 2018. Foundations for natural proofs and quantifier instantiation. PACMPL, 2, POPL (2018), 10:1–10:30. https://doi.org/10.1145/3158098
[36]
J. Ł ukasiewicz and A. Tarski. 1930. Untersuchungen über den Aussagenkalkül. 23, Comptes Rendus des Séances de la Sociélé des Scierices et des Lettres des Varsovie Classe III, Warsaw, Poland.
[37]
R. L. Mccasland, A. Bundy, and P. F. Smith. 2017. MATHsAiD: Automated Mathematical Theory Exploration. Applied Intelligence, 47, 3 (2017), oct, 585–606. issn:0924-669X https://doi.org/10.1007/s10489-017-0954-8
[38]
W. McCune and R. Padmanabhan. 1996. Single identities for lattice theory and for weakly associative lattices. Algebra Universalis, 36 (1996), 12, 436–449. https://doi.org/10.1007/BF01233914
[39]
W. McCune, R. Padmanabhan, M. A. Rose, and R. Veroff. 2005. Automated discovery of single axioms for ortholattices. algebra universalis, 52, 4 (2005), 01 Feb, 541–549. issn:1420-8911 https://doi.org/10.1007/s00012-004-1902-0
[40]
William McCune, R. Padmanabhan, and Robert Veroff. 2003. Yet another single law for lattices. algebra universalis, 50, 2 (2003), 01 Dec, 165–169. issn:1420-8911 https://doi.org/10.1007/s00012-003-1832-2
[41]
W. McCune and A. D. Sands. 1996. Computer and Human Reasoning: Single Implicative Axioms for Groups and for Abelian Groups. The American Mathematical Monthly, 103, 10 (1996), 888–892. issn:00029890, 19300972 http://www.jstor.org/stable/2974613
[42]
William McCune, Robert Veroff, Branden Fitelson, Kenneth Harris, Andrew Feist, and Larry Wos. 2002. Short Single Axioms for Boolean Algebra. Journal of Automated Reasoning, 29, 1 (2002), 01 Mar, 1–16. issn:1573-0670 https://doi.org/10.1023/A:1020542009983
[43]
William W. Mccune. 1993. Single axioms for groups and Abelian groups with various operations. Journal of Automated Reasoning, 10 (1993), 1–13. https://doi.org/10.1007/BF00881862
[44]
B.H. Neumann. 1981. Another single law for groups. Bulletin of the Australian Mathematical Society, 23, 1 (1981), 81–102. https://doi.org/10.1017/S0004972700006912
[45]
Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs That Alter Data Structures. In Proceedings of the 15th International Workshop on Computer Science Logic (CSL ’01). Springer-Verlag, Berlin, Heidelberg. 1–19. isbn:3540425543 https://dl.acm.org/doi/10.5555/647851.737404
[46]
R Padmanabhan. 1969. On Single Equational-Axiom Systems for Abelian Groups. Journal of the Australian Mathematical Society, 9, 1-2 (1969), 143–152. https://doi.org/10.1017/S144678870000570X
[47]
Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science (SFCS ’77). IEEE Computer Society, USA. 46–57. https://doi.org/10.1109/SFCS.1977.32
[48]
Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA. 107–126. isbn:9781450336895 https://doi.org/10.1145/2814270.2814310
[49]
V.N. Redko. 1964. On defining relations for the algebra of regular events. Ukrainian Mathematical Journal, 16, 2 (1964), 120–126. In Russian
[50]
Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Cesare Tinelli, and Clark Barrett. 2019. CVC4SY: Smart and Fast Term Enumeration for Syntax-Guided Synthesis. In Proceedings of the 31st International Conference on Computer Aided Verification (CAV ’19), Isil Dillig and Serdar Tasiran (Eds.) (Lecture Notes in Computer Science, Vol. 11561). Springer International Publishing, Cham. 74–83. isbn:978-3-030-25542-8 https://doi.org/10.1007/978-3-030-25543-5_5
[51]
Adrian Rezus. 2020. Witness Theory: Notes on λ -calculus and Logic. College Publications, London, UK. isbn:ISBN 978-1-84890-326-5
[52]
Arto Salomaa. 1966. Two Complete Axiom Systems for the Algebra of Regular Events. J. ACM, 13, 1 (1966), 158–169. issn:0004-5411 https://doi.org/10.1145/321312.321326
[53]
Eytan Singher and Shachar Itzhaky. 2021. Theory Exploration Powered by Deductive Synthesis. In Computer Aided Verification, Alexandra Silva and K. Rustan M. Leino (Eds.). Springer International Publishing, Cham. 125–148. isbn:978-3-030-81688-9 https://link.springer.com/chapter/10.1007/978-3-030-81688-9_6
[54]
Calvin Smith, Gabriel Ferns, and Aws Albarghouthi. 2017. Discovering Relational Specifications. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017). Association for Computing Machinery, New York, NY, USA. 616–626. isbn:9781450351058 https://doi.org/10.1145/3106237.3106279
[55]
Peter Smith. 2010. The Galois Connection between Syntax and Semantics. https://www.logicmatters.net/resources/pdfs/Galois.pdf
[56]
Armando Solar Lezama. 2008. Program Synthesis By Sketching. Ph. D. Dissertation. EECS Department, University of California, Berkeley. https://dl.acm.org/doi/10.5555/1714168
[57]
Alfred Tarski. 1938. Ein Beitrag zur Axiomatik der Abelschen Gruppen. Fundamenta Mathematicae, 30, 11 (1938), 253–256.
[58]
Irene Lobo Valbuena and Moa Johansson. 2015. Conditional Lemma Discovery and Recursion Induction in Hipster. Electronic Communications of the EASST, 72 (2015), 1–15. https://doi.org/10.14279/tuj.eceasst.72.1009
[59]
Johan Van Benthem. 1984. Correspondence Theory. Springer Netherlands, Dordrecht. 167–247. isbn:978-94-009-6259-0 https://doi.org/10.1007/978-94-009-6259-0_4
[60]
Yuepeng Wang, Isil Dillig, Shuvendu K. Lahiri, and William R. Cook. 2018. Verifying Equivalence of Database-Driven Applications. Proc. ACM Program. Lang., 2, POPL (2018), Article 56, dec, 29 pages. https://doi.org/10.1145/3158144
[61]
Tailin Wu and Max Tegmark. 2019. Toward an artificial intelligence physicist for unsupervised learning. Physical review. E, 100 3-1 (2019), 033311.

Cited By

View all
  • (2025)The Decision Problem for Regular First Order TheoriesProceedings of the ACM on Programming Languages10.1145/37048709:POPL(986-1012)Online publication date: 9-Jan-2025
  • (2023)Equality Saturation Theory Exploration à la CarteProceedings of the ACM on Programming Languages10.1145/36228347:OOPSLA2(1034-1062)Online publication date: 16-Oct-2023
  • (2023)Automated Metamorphic-Relation Generation with ChatGPT: An Experience Report2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)10.1109/COMPSAC57700.2023.00275(1780-1785)Online publication date: Jun-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages  Volume 6, Issue OOPSLA2
October 2022
1932 pages
EISSN:2475-1421
DOI:10.1145/3554307
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 31 October 2022
Published in PACMPL Volume 6, Issue OOPSLA2

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. Axiomatization
  2. Inductive Synthesis
  3. Learning Logics

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)227
  • Downloads (Last 6 weeks)45
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)The Decision Problem for Regular First Order TheoriesProceedings of the ACM on Programming Languages10.1145/37048709:POPL(986-1012)Online publication date: 9-Jan-2025
  • (2023)Equality Saturation Theory Exploration à la CarteProceedings of the ACM on Programming Languages10.1145/36228347:OOPSLA2(1034-1062)Online publication date: 16-Oct-2023
  • (2023)Automated Metamorphic-Relation Generation with ChatGPT: An Experience Report2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)10.1109/COMPSAC57700.2023.00275(1780-1785)Online publication date: Jun-2023

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media