Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3573105.3575682acmconferencesArticle/Chapter ViewAbstractPublication PagespoplConference Proceedingsconference-collections
research-article
Open access

Formalized Class Group Computations and Integral Points on Mordell Elliptic Curves

Published: 11 January 2023 Publication History

Abstract

Diophantine equations are a popular and active area of research in number theory. In this paper we consider Mordell equations, which are of the form y2=x3+d, where d is a (given) nonzero integer number and all solutions in integers x and y have to be determined. One non-elementary approach for this problem is the resolution via descent and class groups. Along these lines we formalized in Lean 3 the resolution of Mordell equations for several instances of d<0. In order to achieve this, we needed to formalize several other theories from number theory that are interesting on their own as well, such as ideal norms, quadratic fields and rings, and explicit computations of the class number. Moreover, we introduced new computational tactics in order to carry out efficiently computations in quadratic rings and beyond.

References

[1]
Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Rouhling, and Kazuhiko Sakaguchi. 2020. Competing Inheritance Paths in Dependent Type Theory: A Case Study in Functional Analysis. In IJCAR 2020, Nicolas Peltier and Viorica Sofronie-Stokkermans (Eds.) (LNCS, Vol. 12167). Springer, 3–20. https://doi.org/10.1007/978-3-030-51054-1_1
[2]
Anne Baanen. 2022. Use and Abuse of Instance Parameters in the Lean Mathematical Library. In ITP 2022, June Andronick and Leonardo de Moura (Eds.) (LIPIcs, Vol. 237). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 4:1–4:20. isbn:978-3-95977-252-5 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ITP.2022.4
[3]
Anne Baanen, Sander R. Dahmen, Ashvni Narayanan, and Filippo A. E. Nuccio Mortarino Majno di Capriglio. 2021. A Formalization of Dedekind Domains and Class Groups of Global Fields. In ITP 2021, Liron Cohen and Cezary Kaliszyk (Eds.) (LIPIcs, Vol. 193). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 5:1–5:19. isbn:978-3-95977-188-7 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ITP.2021.5
[4]
Alan Baker. 1968. Contributions to the Theory of Diophantine Equations. II. the Diophantine Equation y^2 = x^3 + k. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 263, 1139 (1968), 193–208. issn:00804614 http://www.jstor.org/stable/73429
[5]
Michael A. Bennett and Amir Ghadermarzi. 2015. Mordell’s equation: a classical approach. LMS Journal of Computation and Mathematics, 18, 1 (2015), 633–646. issn:1461-1570 https://doi.org/10.1112/S1461157015000182
[6]
Henri Cohen. 2007. Number theory: Volume I: Tools and Diophantine equations (Graduate Texts in Mathematics, Vol. 239). Springer, Cham. https://doi.org/10.1007/978-0-387-49923-9
[7]
María Inés de Frutos-Fernández. 2022. Formalizing the Ring of Adèles of a Global Field. In ITP 2022, June Andronick and Leonardo de Moura (Eds.) (LIPIcs, Vol. 237). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 14:1–14:18. isbn:978-3-95977-252-5 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ITP.2022.14
[8]
Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean theorem prover (system description). In Automated Deduction - CADE-25, A. P. Felty and A. Middeldorp (Eds.) (LNCS, Vol. 9195). Springer, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26
[9]
Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. In Automated Deduction - CADE-28, André Platzer and Geoff Sutcliffe (Eds.) (LNCS, Vol. 12699). Springer, 625–635. https://doi.org/10.1007/978-3-030-79876-5_37
[10]
David Delahaye and Micaela Mayero. 2005. Diophantus’ 20th Problem and Fermat’s Last Theorem for n=4: Formalization of Fermat’s Proofs in the Coq Proof Assistant. Draft. arxiv:cs/0510011
[11]
Leonard E. Dickson. 1920. History of the theory of numbers. 2, Carnegie Institution of Washington.
[12]
David S. Dummit and Richard M. Foote. 2004. Abstract algebra (third ed.). John Wiley & Sons, Inc., Hoboken, NJ. isbn:0-471-43334-9
[13]
Manuel Eberl. 2017. Minkowski’s Theorem. Archive of Formal Proofs, July, issn:2150-914x https://isa-afp.org/entries/Minkowskis_Theorem.html
[14]
Harold M. Edwards. 2000. Fermat’s last theorem (Graduate Texts in Mathematics, Vol. 50). Springer, Cham. isbn:978-0-387-95002-0 A genetic introduction to algebraic number theory, Corrected reprint of the 1977 original
[15]
Benjamin Grégoire and Assia Mahboubi. 2005. Proving equalities in a commutative ring done right in Coq. In TPHOLs 2005, J. Hurd and T. Melham (Eds.) (LNCS, Vol. 3603). Springer, Cham. 98–113. https://doi.org/10.1007/11541868_7
[16]
S. Lang. 2005. Undergraduate Algebra. Springer New York. isbn:9780387220253 lccn:2004049194
[17]
Dominique Larchey-Wendling and Yannick Forster. 2019. Hilbert’s Tenth Problem in Coq. In FSCD 2019, Herman Geuvers (Ed.) (LIPIcs, Vol. 131). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 27:1–27:20. isbn:978-3-95977-107-8 issn:1868-8969 https://doi.org/10.4230/LIPIcs.FSCD.2019.27
[18]
Robert Y. Lewis. 2017. An Extensible Ad Hoc Interface between Lean and Mathematica. Electronic Proceedings in Theoretical Computer Science, 262 (2017), Dec., 23–37. issn:2075-2180 https://doi.org/10.4204/EPTCS.262.4 arXiv:1712.09288 [cs]
[19]
Robert Y. Lewis and Paul-Nicolas Madelaine. 2020. Simplifying Casts and Coercions (Extended Abstract). In Practical Aspects of Automated Reasoning, Pascal Fontaine, Konstantin Korovin, Ilias S. Kotsireas, Philipp Rümmer, and Sophie Tourret (Eds.) (CEUR Workshop Proceedings, Vol. 2752). CEUR-WS.org, Aachen, Germany. 53–62. http://ceur-ws.org/Vol-2752/paper4.pdf
[20]
Robert Y. Lewis and Minchao Wu. 2022. A Bi-Directional Extensible Interface Between Lean and Mathematica. Journal of Automated Reasoning, 66, 2 (2022), May, 215–238. issn:1573-0670 https://doi.org/10.1007/s10817-021-09611-1
[21]
Louis Mordell. 1914. The Diophantine Equation y^2-k=x^3. Proceedings of the London Mathematical Society, s2-13, 1 (1914), 01, 60–80. issn:0024-6115 https://doi.org/10.1112/plms/s2-13.1.60
[22]
Louis Mordell. 1920. A Statement by Fermat. Proceedings of the London Mathematical Society, s2-18 (1920), v–vi. https://doi.org/10.1112/plms/s2-18.1.1-s
[23]
Louis Mordell. 1923. On the Integer Solutions of the Equation ey^2 = ax^3+bx^2+cx+d. Proceedings of the London Mathematical Society, s2-21, 1 (1923), 01, 415–419. issn:0024-6115 https://doi.org/10.1112/plms/s2-21.1.415
[24]
Louis Mordell. 1969. Diophantine equations. Academic Press. isbn:9780080873428
[25]
J. Neukirch. 1999. Algebraic number theory (Fundamental Principles of Mathematical Sciences, Vol. 322). Springer, Cham. isbn:3-540-65399-6 https://doi.org/10.1007/978-3-662-03983-0 Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder
[26]
R. Oosterhuis. 2007. Mechanised theorem proving: exponents 3 and 4 of Fermat’s last theorem using Isabelle. MSc thesis. Faculty of Science and Engineering, Groningen. https://fse.studenttheses.ub.rug.nl/8392/
[27]
Karol Pąk and Cezary Kaliszyk. 2022. Formalizing a Diophantine Representation of the Set of Prime Numbers. In ITP 2022, June Andronick and Leonardo de Moura (Eds.) (LIPIcs, Vol. 237). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 26:1–26:8. isbn:978-3-95977-252-5 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ITP.2022.26
[28]
Daniel Selsam, Sebastian Ullrich, and Leonardo de Moura. 2020. Tabled Typeclass Resolution. CoRR, abs/2001.04301 (2020), arXiv:2001.04301. arxiv:2001.04301
[29]
Harold Stark. 1973. Effective estimates of solutions of some Diophantine equations. Acta Arithmetica, 24, 3 (1973), 251–259. http://eudml.org/doc/205226
[30]
The mathlib Community. 2020. The Lean Mathematical Library. In CPP 2020, J. Blanchette and C. Hrițcu (Eds.) (Certified Programs and Proofs). ACM, 367–381. isbn:9781450370974 https://doi.org/10.1145/3372885.3373824
[31]
The Sage Developers. 2022. SageMath, the Sage Mathematics Software System (Version 9.7). https://www.sagemath.org

Cited By

View all
  • (2025)Certifying Rings of Integers in Number FieldsProceedings of the 14th ACM SIGPLAN International Conference on Certified Programs and Proofs10.1145/3703595.3705874(50-66)Online publication date: 10-Jan-2025
  • (2025)De Zolt’s Postulate in Three-DimensionsThe Theory of Plane Area at the Crossroads10.1007/978-3-031-70916-6_4(97-131)Online publication date: 3-Jan-2025

Index Terms

  1. Formalized Class Group Computations and Integral Points on Mordell Elliptic Curves

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      CPP 2023: Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs
      January 2023
      347 pages
      ISBN:9798400700262
      DOI:10.1145/3573105
      This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 11 January 2023

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Diophantine equations
      2. Lean
      3. Mathlib
      4. algebraic number the- ory
      5. formalized mathematics
      6. tactics

      Qualifiers

      • Research-article

      Funding Sources

      • NWO

      Conference

      CPP '23
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 18 of 26 submissions, 69%

      Upcoming Conference

      POPL '26

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)213
      • Downloads (Last 6 weeks)41
      Reflects downloads up to 16 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Certifying Rings of Integers in Number FieldsProceedings of the 14th ACM SIGPLAN International Conference on Certified Programs and Proofs10.1145/3703595.3705874(50-66)Online publication date: 10-Jan-2025
      • (2025)De Zolt’s Postulate in Three-DimensionsThe Theory of Plane Area at the Crossroads10.1007/978-3-031-70916-6_4(97-131)Online publication date: 3-Jan-2025

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media