Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Efficient Document-at-a-time and Score-at-a-time Query Evaluation for Learned Sparse Representations

Published: 22 March 2023 Publication History

Abstract

Researchers have had much recent success with ranking models based on so-called learned sparse representations generated by transformers. One crucial advantage of this approach is that such models can exploit inverted indexes for top-k retrieval, thereby leveraging decades of work on efficient query evaluation. Yet, there remain many open questions about how these learned representations fit within the existing literature, which our work aims to tackle using four representative learned sparse models. We find that impact weights generated by transformers appear to greatly reduce opportunities for skipping and early exiting optimizations in well-studied document-at-a-time (DaaT) approaches. Similarly, “off-the-shelf” application of score-at-a-time (SaaT) processing exhibits a mismatch between these weights and assumptions behind accumulator management strategies. Building on these observations, we present solutions to address deficiencies with both DaaT and SaaT approaches, yielding substantial speedups in query evaluation. Our detailed empirical analysis demonstrates that both methods lie on the effectiveness–efficiency Pareto frontier, indicating that the optimal choice for deployment depends on operational constraints.

References

[1]
G. Amati and C. J. Van Rijsbergen. 2002. Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans. Info. Syst. 20, 4 (2002), 357–389.
[2]
V. N. Anh, O. de Kretser, and A. Moffat. 2001. Vector-space ranking with effective early termination. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’01). 35–42.
[3]
Y. Bai, X. Li, G. Wang, C. Zhang, L. Shang, J. Xu, Z. Wang, F. Wang, and Q. Liu. 2020. SparTerm: Learning term-based sparse representation for fast text retrieval. Retrieved from https://arXiv:2010.00768.
[4]
P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao, X. Liu, R. Majumder, A. McNamara, B. Mitra, T. Nguyen, M. Rosenberg, X. Song, A. Stoica, S. Tiwary, and T. Wang. 2018. MS MARCO: A human generated machine reading comprehension dataset. Retrieved from https://arXiv:1611.09268v3.
[5]
A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. 2003. Efficient query evaluation using a two-level retrieval process. In Proceedings of the 12th International Conference on Information and Knowledge Management (CIKM’03). 426–434.
[6]
K. Chakrabarti, S. Chaudhuri, and V. Ganti. 2011. Interval-based pruning for top-k processing over compressed lists. In Proceedings of the IEEE 27th International Conference on Data Engineering. 709–720.
[7]
E. Choi, S. Lee, M. Choi, H. Ko, Y.-I Song, and J. Lee. 2022. SpaDE: Improving sparse representations using a dual document encoder for first-stage retrieval. In Proceedings of the 31st ACM International Conference on Information and Knowledge Management (CIKM’22). 272–282.
[8]
M. Crane, A. Trotman, and R. O’Keefe. 2013. Maintaining discriminatory power in quantized indexes. In Proceedings of the 22nd ACM International Conference on Information and Knowledge Management (CIKM’13). 1221–1224.
[9]
M. Crane, J. S. Culpepper, J. Lin, J. Mackenzie, and A. Trotman. 2017. A comparison of document-at-a-time and score-at-a-time query evaluation. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM’17). 201–210.
[10]
N. Craswell, B. Mitra, E. Yilmaz, D. Campos, and J. Lin. 2021. Overview of the TREC 2021 deep learning track. In Proceedings of the 30th Text REtrieval Conference (TREC’21).
[11]
J. S. Culpepper, C. L. A. Clarke, and J. Lin. 2016. Dynamic cutoff prediction in multi-stage retrieval systems. In Proceedings of the 21st Australasian Document Computing Symposium (ADCS’16). 17–24.
[12]
Z. Dai and J. Callan. 2019. Context-aware sentence/passage term importance estimation for first stage retrieval. Retrieved from https://arXiv:1910.10687.
[13]
C. M. Daoud, E. S. de Moura, D. Fernandes, A. S. da Silva, C. Rossi, and A. Carvalho. 2017. Waves: A fast multi-tier top-k query processing algorithm. Info. Retr. J. 20, 3 (2017), 292–316.
[14]
J. Dean and L. A. Barroso. 2013. The tail at scale. Commun. ACM 56, 2 (2013), 74–80.
[15]
L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and A. Shalita. 2016. Compressing graphs and indexes with recursive graph bisection. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). 1535–1544.
[16]
C. Dimopoulos, S. Nepomnyachiy, and T. Suel. 2013. A candidate filtering mechanism for fast top-k query processing on modern CPUs. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’16). 723–732.
[17]
C. Dimopoulos, S. Nepomnyachiy, and T. Suel. 2013. Optimizing top-k document retrieval strategies for block-max indexes. In Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM’13). 113–122.
[18]
S. Ding and T. Suel. 2011. Faster top-k document retrieval using block-max indexes. In Proceedings of the 34th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’11). 993–1002.
[19]
M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and J. Zien. 2011. Evaluation strategies for top-k queries over memory-resident inverted indexes. Proc. VLDB Endow. 4, 12 (2011), 1213–1224.
[20]
T. Formal, C. Lassance, B. Piwowarski, and S. Clinchant. 2021. SPLADE v2: Sparse lexical and expansion model for information retrieval. Retrieved from https://arXiv:2109.10086.
[21]
T. Formal, C. Lassance, B. Piwowarski, and S. Clinchant. 2022. From distillation to hard negative sampling: Making sparse neural IR models more effective. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’22). 2353–2359.
[22]
T. Formal, B. Piwowarski, and S. Clinchant. 2021. SPLADE: Sparse lexical and expansion model for first stage ranking. In Proceedings of the 44th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’21). 2288–2292.
[23]
L. Gao and J. Callan. 2022. Unsupervised corpus aware language model pre-training for dense passage retrieval. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL’22). 2843–2853.
[24]
L. Gao, Z. Dai, T. Chen, Z. Fan, B. Van Durme, and J. Callan. 2021. Complementing lexical retrieval with semantic residual embedding. In Proceedings of the 43rd European Conference on Information Retrieval (ECIR’21), Part I. 146–160.
[25]
A. Grand, R. Muir, J. Ferenczi, and J. Lin. 2020. From maxscore to block-max WAND: The story of how lucene significantly improved query evaluation performance. In Proceedings of the 42nd European Conference on Information Retrieval, Part II (ECIR’20). 20–27.
[26]
S. Hofstätter, S. Althammer, M. Schröder, M. Sertkan, and A. Hanbury. 2020. Improving efficient neural ranking models with cross-architecture knowledge distillation. Retrieved from https://arXiv:2010.02666.
[27]
S. Hofstätter, N. Craswell, B. Mitra, H. Zamani, and A. Hanbury. 2022. Are we there yet? A decision framework for replacing term based retrieval with dense retrieval systems. Retrieved from https://arXiv:2206.12993.
[28]
X.-F. Jia, A. Trotman, and R. O’Keefe. 2010. Efficient accumulator initialisation. In Proceedings of the 15th Australasian Document Computing Symposium (ADCS’10).
[29]
C. Kamphuis, A. P. de Vries, L. Boytsov, and J. Lin. 2020. Which BM25 do you mean? A large-scale reproducibility study of scoring variants. In Proceedings of the 42nd European Conference on Information Retrieval (ECIR’20). 28–34.
[30]
V. Karpukhin, B. Oğuz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. 2020. Dense passage retrieval for open-domain question answering. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’20). 6769–6781.
[31]
O. Khattab, M. Hammoud, and T. Elsayed. 2020. Finding the best of both worlds: Faster and more robust top-k document retrieval. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’20). 1031–1040.
[32]
C. Lassance and S. Clinchant. 2022. An efficiency study for SPLADE models. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’22). 2220–2226.
[33]
D. Lemire and L. Boytsov. 2015. Decoding billions of integers per second through vectorization. Softw.: Pract. Exper. 41, 1 (2015), 1–29.
[34]
M. Li, X. Zhang, J. Xin, H. Zhang, and J. Lin. 2022. Certified error control of candidate set pruning for two-stage relevance ranking. Retrieved from https://arXiv:2205.09638.
[35]
J. Lin. 2022. A proposed conceptual framework for a representational approach to information retrieval. SIGIR Forum 55, 2 (2022), 4.1–4.29.
[36]
J. Lin and X. Ma. 2021. A few brief notes on deepimpact, COIL, and a conceptual framework for information retrieval techniques. Retrieved from https://arXiv:2106.14807.
[37]
J. Lin and A. Trotman. 2015. Anytime ranking for impact-ordered indexes. In Proceedings of the ACM International Conference on the Theory of Information Retrieval (ICTIR’15). 301–304.
[38]
J. Lin and A. Trotman. 2017. The role of index compression in score-at-a-time query evaluation. Info. Retr. J. 20, 3 (2017), 199–220.
[39]
J. Lin, J. Mackenzie, C. Kamphuis, C. Macdonald, A. Mallia, M. Siedlaczek, A. Trotman, and A. de Vries. 2020. Supporting interoperability between open-source search engines with the common index file format. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’20). 2149–2152.
[40]
J. Lin, X. Ma, S.-C. Lin, J.-H. Yang, R. Pradeep, and R. Nogueira. 2021. Pyserini: A python toolkit for reproducible information retrieval research with sparse and dense representations. In Proceedings of the 44th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’21). 2356–2362.
[41]
J. Lin, X. Ma, J. Mackenzie, and A. Mallia. 2021. On the separation of logical and physical ranking models for text retrieval applications. In Proceedings of the 2nd International Conference on Design of Experimental Search & Information REtrieval Systems (DESIRES’21). 176–178.
[42]
J. Lin, R. Nogueira, and A. Yates. 2021. Pretrained Transformers for Text Ranking: BERT and Beyond. Morgan & Claypool Publishers.
[43]
X. Ma, R. Pradeep, R. Nogueira, and J. Lin. 2022. Document expansions and learned sparse lexical representations for MSMARCO V1 and V2. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’22).
[44]
J. Mackenzie and A. Moffat. 2020. Examining the additivity of top-k query processing innovations. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM’20). 1085–1094.
[45]
J. Mackenzie, F. Scholer, and J. S. Culpepper. 2017. Early termination heuristics for score-at-a-time index traversal. In Proceedings of the 22nd Australasian Document Computing Symposium (ADCS’17). 8.1–8.8.
[46]
J. Mackenzie, J. Shane Culpepper, R. Blanco, M. Crane, C. L. A. Clarke, and J. Lin. 2018. Query driven algorithm selection in early stage retrieval. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM’18). 396–404.
[47]
J. Mackenzie, Z. Dai, L. Gallagher, and J. Callan. 2020. Efficiency implications of term weighting for passage retrieval. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’20). 1821–1824.
[48]
J. Mackenzie, M. Petri, and A. Moffat. 2021. Faster index reordering with bipartite graph partitioning. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’21). 1910–1914.
[49]
J. Mackenzie, M. Petri, and A. Moffat. 2022. Anytime ranking on document-ordered indexes. ACM Trans. Info. Syst. 40, 1 (Jan.2022), 13.1–13.32.
[50]
Y. A. Malkov and D. A. Yashunin. 2020. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.
[51]
A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini. 2017. Faster blockmax WAND with variable-sized blocks. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’17). 625–634.
[52]
A. Mallia, M. Siedlaczek, J. Mackenzie, and T. Suel. 2019. PISA: Performant indexes and search for academia. In Proceedings of the Open-Source IR Replicability Challenge (OSIRRC’19). 50–56.
[53]
A. Mallia, M. Siedlaczek, and T. Suel. 2019. An experimental study of index compression and DAAT query processing methods. In Proceedings of the 41st European Conference on Information Retrieval (ECIR’19). 353–368.
[54]
A. Mallia, M. Siedlaczek, M. Sun, and T. Suel. 2020. A comparison of top-k threshold estimation techniques for disjunctive query processing. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM’20). 2141–2144.
[55]
A. Mallia, O. Khattab, T. Suel, and N. Tonellotto. 2021. Learning passage impacts for inverted indexes. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’21). 1723–1727.
[56]
A. Mallia, M. Siedlaczek, and T. Suel. 2021. Fast disjunctive candidate generation using live block filtering. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (WSDM’21). 671–679.
[57]
A. Mallia, J. Mackenzie, T. Suel, and N. Tonellotto. 2022. Faster learned sparse retrieval with guided traversal. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’22). 1901–1905.
[58]
[59]
R. Nogueira, W. Yang, J. Lin, and K. Cho. 2019. Document expansion by query prediction. Retrieved from https://arXiv:1904.08375.
[60]
M. Petri, J. S. Culpepper, and A. Moffat. 2013. Exploring the magic of WAND. In Proceedings of the 18th Australasian Document Computing Symposium (ADCS’13). 58–65.
[61]
M. Petri, A. Moffat, J. Mackenzie, J. S. Culpepper, and D. Beck. 2019. Accelerated query processing via similarity score prediction. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’19). 485–494.
[62]
G. E. Pibiri and R. Venturini. 2020. Techniques for inverted index compression. Comput. Surveys 53, 6, Article 125 (2020), 36 pages.
[63]
J. Ponte and W. B. Croft. 1998. A language modeling approach to information retrieval. In Proceedings of the 21st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’98). 275–281.
[64]
C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 140 (2020), 1–67.
[65]
S. Robertson and H. Zaragoza. 2009. The probabilistic relevance framework: BM25 and beyond. Found. Trends Info. Retr. 3, 4 (2009), 333–389.
[66]
M. Siedlaczek, A. Mallia, and T. Suel. 2022. Using conjunctions for faster disjunctive top-k queries. In Proceedings of the 15th ACM International Conference on Web Search and Data Mining (WSDM 2022). 917–927.
[67]
F. Silvestri. 2007. Sorting out the document identifier assignment problem. In Proceedings of the 29th European Conference on Information Retrieval (ECIR’07). 101–112.
[68]
N. Thakur, N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych. 2021. BEIR: A heterogeneous benchmark for zero-shot evaluation of information retrieval models. In Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS’21).
[69]
N. Tonellotto, C. Macdonald, and I. Ounis. 2018. Efficient query processing for scalable web search. Found. Trends Info. Retr. 12, 4–5 (2018), 319–500.
[70]
A. Trotman and M. Crane. 2019. Micro- and macro-optimizations of SaaT search. Softw.: Pract. Exper. 49, 5 (2019), 942–950.
[71]
A. Trotman, J. Degenhardt, and S. Kallumadi. 2017. The architecture of eBay search. In Proceedings of the SIGIR Workshop on eCommerce (eCom’17). 176–178.
[72]
A. Trotman and K. Lilly. 2018. Elias revisited: Group elias SIMD coding. In Proceedings of the 23rd Australasian Document Computing Symposium (ADCS’18). 4.1–4.8.
[73]
A. Trotman, A. Puurula, and B. Burgess. 2014. Improvements to BM25 and language models examined. In Proceedings of the 19th Australasian Document Computing Symposium (ADCS’14). 58–65.
[74]
H. R. Turtle and J. Flood. 1995. Query evaluation: Strategies and optimizations. Info. Process. Manage. 31, 6 (1995), 831–850.
[75]
L. Wang, J. Lin, and D. Metzler. 2010. Learning to efficiently rank. In Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’10). 138–145.
[76]
L. Wang, J. Lin, and D. Metzler. 2011. A cascade ranking model for efficient ranked retrieval. In Proceedings of the 34th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’11). 105–114.
[77]
Q. Wang, C. Dimopoulos, and T. Suel. 2016. Fast first-phase candidate generation for cascading rankers. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’16). 295–304.
[78]
L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. N. Bennett, J. Ahmed, and A. Overwijk. 2021. Approximate nearest neighbor negative contrastive learning for dense text retrieval. In Proceedings of the 9th International Conference on Learning Representations (ICLR’21).
[79]
P. Yang, H. Fang, and J. Lin. 2018. Anserini: Reproducible ranking baselines using lucene. J. Data Info. Qual. 10, 4 (2018), Article 16.
[80]
S. Zhuang and G. Zuccon. 2021. Fast passage re-ranking with contextualized exact term matching and efficient passage expansion. Retrieved from https://arXiv:2108.08513.
[81]
S. Zhuang and G. Zuccon. 2021. TILDE: Term independent likelihood moDEl for passage re-ranking. In Proceedings of the 44th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’21). 1483–1492.
[82]
S. Zilberstein. 1996. Using anytime algorithms in intelligent systems. AI Mag. 17, 3 (1996), 73–83.
[83]
J. Zobel and A. Moffat. 2006. Inverted files for text search engines. Comput. Surveys 38, 2 (2006), 6:1–6:56.

Cited By

View all
  • (2024)Rank-Biased Quality Measurement for Sets and RankingsProceedings of the 2024 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region10.1145/3673791.3698405(135-144)Online publication date: 8-Dec-2024
  • (2024)Bridging Dense and Sparse Maximum Inner Product SearchACM Transactions on Information Systems10.1145/366532442:6(1-38)Online publication date: 19-Aug-2024
  • (2024)Faster Learned Sparse Retrieval with Block-Max PruningProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657906(2411-2415)Online publication date: 10-Jul-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Information Systems
ACM Transactions on Information Systems  Volume 41, Issue 4
October 2023
958 pages
ISSN:1046-8188
EISSN:1558-2868
DOI:10.1145/3587261
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 March 2023
Online AM: 15 December 2022
Accepted: 28 November 2022
Revised: 18 October 2022
Received: 13 April 2022
Published in TOIS Volume 41, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Efficiency
  2. indexing
  3. query processing
  4. learned sparse retrieval

Qualifiers

  • Research-article

Funding Sources

  • Australian Research Council Discovery
  • Natural Sciences and Engineering Research Council (NSERC) of Canada

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)231
  • Downloads (Last 6 weeks)11
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Rank-Biased Quality Measurement for Sets and RankingsProceedings of the 2024 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region10.1145/3673791.3698405(135-144)Online publication date: 8-Dec-2024
  • (2024)Bridging Dense and Sparse Maximum Inner Product SearchACM Transactions on Information Systems10.1145/366532442:6(1-38)Online publication date: 19-Aug-2024
  • (2024)Faster Learned Sparse Retrieval with Block-Max PruningProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657906(2411-2415)Online publication date: 10-Jul-2024
  • (2024)Revisiting Document Expansion and Filtering for Effective First-Stage RetrievalProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657850(186-196)Online publication date: 10-Jul-2024
  • (2024)Two-Step SPLADE: Simple, Efficient and Effective Approximation of SPLADEAdvances in Information Retrieval10.1007/978-3-031-56060-6_23(349-363)Online publication date: 24-Mar-2024
  • (2023)Exploring the Representation Power of SPLADE ModelsProceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3578337.3605129(143-147)Online publication date: 9-Aug-2023
  • (2023)A Static Pruning Study on Sparse Neural RetrieversProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591941(1771-1775)Online publication date: 19-Jul-2023
  • (2023)ReNeuIR at SIGIR 2023: The Second Workshop on Reaching Efficiency in Neural Information RetrievalProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591922(3456-3459)Online publication date: 19-Jul-2023

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media