Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3583131.3590456acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Computing Star Discrepancies with Numerical Black-Box Optimization Algorithms

Published: 12 July 2023 Publication History

Abstract

The L star discrepancy is a measure for the regularity of a finite set of points taken from [0, 1)d. Low discrepancy point sets are highly relevant for Quasi-Monte Carlo methods in numerical integration and several other applications. Unfortunately, computing the L star discrepancy of a given point set is known to be a hard problem, with the best exact algorithms falling short for even moderate dimensions around 8. However, despite the difficulty of finding the global maximum that defines the L star discrepancy of the set, local evaluations at selected points are inexpensive. This makes the problem tractable by black-box optimization approaches.
In this work we compare 8 popular numerical black-box optimization algorithms on the L star discrepancy computation problem, using a wide set of instances in dimensions 2 to 15. We show that all used optimizers perform very badly on a large majority of the instances and that in many cases random search outperforms even the more sophisticated solvers. We suspect that state-of-the-art numerical black-box optimization techniques fail to capture the global structure of the problem, an important shortcoming that may guide their future development.
We also provide a parallel implementation of the best-known algorithm to compute the discrepancy.

References

[1]
E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang. 2009. The Design of OpenMP Tasks. IEEE Transactions on Parallel and Distributed Systems 20, 3 (March 2009), 404--418.
[2]
J. Bossek, C. Doerr, P. Kerschke, A. Neumann, and F. Neumann. 2020. Evolving Sampling Strategies for One-Shot Optimization Tasks. In Proc. of Parallel Problem Solving from Nature (PPSN) (LNCS, Vol. 12269). Springer, 111--124.
[3]
O. Bousquet, S. Gelly, K. Kurach, O. Teytaud, and D. Vincent. 2017. Critical Hyper-Parameters: No Random, No Cry. CoRR abs/1706.03200 (2017). arXiv:1706.03200 http://arxiv.org/abs/1706.03200
[4]
K. I. Chatzilygeroudis, A. Cully, V. Vassiliades, and J.-B. Mouret. 2020. Quality-Diversity Optimization: a Novel Branch of Stochastic Optimization. CoRR abs/2012.04322 (2020). arXiv:2012.04322 https://arxiv.org/abs/2012.04322
[5]
F. Clément, C. Doerr, and L. Paquete. 2022. Star Discrepancy Subset Selection: Problem Formulation and Efficient Approaches for Low Dimensions. Journal of Complexity 70 (2022), 101645.
[6]
F. Clément, D. Vermetten, J. de Nobel, A. D. Jesus, L. Paquete, and C. Doerr. 2023. Reproducibility files and additional figures.
[7]
J. de Nobel, F. Ye, D. Vermetten, H. Wang, C. Doerr, and T. Bäck. 2021. IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics. CoRR abs/2111.04077 (2021). arXiv:2111.04077 https://arxiv.org/abs/2111.04077
[8]
J. Dick and F. Pillichshammer. 2010. Digital Nets and Sequences. Cambridge University Press.
[9]
D.P. Dobkin, D. Eppstein, and D.P. Mitchell. 1996. Computing the Discrepancy with Applications to Supersampling Patterns. ACM Trans. Graph. 15 (1996), 354--376.
[10]
C. Doerr, M. Gnewuch, and M. Wahlström. 2014. Calculation of Discrepancy Measures and Applications. In A Panorama of Discrepancy Theory, W. Chen, A. Srivastav, and G. Travaglini (Eds.). Springer, 621--678.
[11]
C. Doerr and F.-M. De Rainville. 2013. Constructing Low Star Discrepancy Point Sets with Genetic Algorithms. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 789--796.
[12]
C. Doerr, H. Wang, F. Ye, S. van Rijn, and T. Bäck. 2018. IOHprofiler: A Benchmarking and Profiling Tool for Iterative Optimization Heuristics. CoRR abs/1810.05281 (2018). http://arxiv.org/abs/1810.05281 Available at http://arxiv.org/abs/1810.05281. A more up-to-date documentation of IOHprofiler is available at https://iohprofiler.github.io/.
[13]
G. Dueck and T. Scheuer. 1990. Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 90 (1990), 161--175.
[14]
B. Fox. 1986. Algorithm 647:Implementation and Relative Efficiency of Quasirandom Sequence Generators. ACM Trans. Math. Software 12, 4 (1986), 362--376.
[15]
S. Galanti and A. Jung. 1997. Low-discrepancy sequences: Monte-Carlo simulation of option prices. J. Deriv (1997), 63--83.
[16]
P. Giannopoulos, C. Knauer, M. Wahlström, and D. Werner. 2012. Hardness of discrepancy computation and ε-net verification in high dimension. J. Complex. 28 (2012), 162--176.
[17]
M. Gnewuch, A. Srivastav, and C. Winzen. 2009. Finding Optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems. J. Complex. 25 (2009), 115--127.
[18]
M. Gnewuch, M. Wahlström, and C. Winzen. 2012. A New Randomized Algorithm to Approximate the Star Discrepancy Based on Threshold Accepting. SIAM J. Numerical Analysis 50 (2012), 781--807.
[19]
J. H. Halton. 1960. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2 (1960), 84--90.
[20]
N. Hansen and A. Ostermeier. 2001. Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001), 159--195.
[21]
E. Hlawka. 1961. Funktionen von beschrankter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pum Appl. 54 (1961), 325--333.
[22]
J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In Proc. of ICNN'95 - International Conference on Neural Networks, Vol. 4. 1942--1948.
[23]
S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. 1983. Optimization by Simulated Annealing. Science 220 (1983), 671--680.
[24]
J. F. Koksma. 1942. Een algemeene stelling inuit de theorie der gelijkmatige verdeeling modulo 1. Mathematica (Zutphen) 11 (1942), 7--11.
[25]
P. Larrañaga and J.A. Lozano. 2001. Estimation of distribution algorithms: A new tool for evolutionary computation. Vol. 2. Springer Science & Business Media.
[26]
L. Meunier, H. Rakotoarison, P. K. Wong, B. Roziere, J. Rapin, O. Teytaud, A. Moreau, and C. Doerr. 2021. Black-box optimization revisited: Improving algorithm selection wizards through massive benchmarking. IEEE Transactions on Evolutionary Computation 26, 3 (2021), 490--500.
[27]
A. Neumann, W. Gao, C. Doerr, F. Neumann, and M. Wagner. 2018. Discrepancy-based evolutionary diversity optimization. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 991--998.
[28]
A. Neumann, W. Gao, M. Wagner, and F. Neumann. 2019. Evolutionary diversity optimization using multi-objective indicators. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 837--845.
[29]
H. Niederreiter. 1972. Discrepancy and Convex Programming. Ann. Mat. Pura Appl. 93 (1972), 89--97.
[30]
H. Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics.
[31]
L. Paulin, N. Bonneel, D. Coeurjoly, J.-C. Iehl, A. Keller, and V. Ostromoukhov. 2022. MatBuilder: Mastering Sampling Uniformity over projections. ACM Transactions on Graphics (proceedings of SIGGRAPH) (2022).
[32]
M. J. D. Powell. 1994. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation. In Advances in Optimization and Numerical Analysis, S. Gomez and J.-P. Hennart (Eds.). Springer Netherlands, Dordrecht, 51--67.
[33]
J.K. Pugh, L.B. Soros, and K.O. Stanley. 2016. Quality Diversity: A New Frontier for Evolutionary Computation. Frontiers Robotics AI 3 (2016), 40.
[34]
J.K. Pugh, L.B. Soros, P.A. Szerlip, and K.O. Stanley. 2015. Confronting the Challenge of Quality Diversity. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 967--974.
[35]
J. Rapin and O. Teytaud. 2018. Nevergrad - A gradient-free optimization platform. https://GitHub.com/FacebookResearch/Nevergrad.
[36]
T.J. Santner, B.J. Williams, and W.I. Notz. 2003. The Design and Analysis of Computer Experiments. Springer Series in Statistics, Springer.
[37]
O. Shir. 2012. Niching in Evolutionary Algorithms. In Handbook of Natural Computing, Grzegorz Rozenberg, Thomas Bäck, and Joost N. Kok (Eds.). Springer, 1035--1069.
[38]
I.M. Sobol. 1967. On the distribution of points in a cube and the approximate evaluation of integrals. U. S. S. R. Comput. Math. and Math. Phys. 7, 4 (Jan. 1967), 86--112.
[39]
J.C. Spall. 1992. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Automat. Control 37, 3 (1992), 332--341.
[40]
R. Storn and K. Price. 1997. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 4 (1997), 341--359.
[41]
H. Wang, D. Vermetten, F. Ye, C. Doerr, and T. Bäck. 2022. IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics. ACM Trans. Evol. Learn. Optim. 2, Article 3 (2022).
[42]
P. Winker and K.T. Fang. 1997. Applications of Threshold-Accepting to the evaluation of the discrepancy of a set of points. SIAM J. Numerical Analysis 34 (1997), 2028--2042.

Cited By

View all
  • (2024)Message-Passing Monte Carlo: Generating low-discrepancy point sets via graph neural networksProceedings of the National Academy of Sciences10.1073/pnas.2409913121121:40Online publication date: 26-Sep-2024
  • (2024)Empirical Analysis of the Dynamic Binary Value Problem with IOHprofilerParallel Problem Solving from Nature – PPSN XVIII10.1007/978-3-031-70068-2_2(20-35)Online publication date: 7-Sep-2024

Index Terms

  1. Computing Star Discrepancies with Numerical Black-Box Optimization Algorithms

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      GECCO '23: Proceedings of the Genetic and Evolutionary Computation Conference
      July 2023
      1667 pages
      ISBN:9798400701191
      DOI:10.1145/3583131
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 12 July 2023

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. star discrepancy
      2. black-box optimization
      3. parallel computing
      4. evolutionary computation
      5. uniform distributions

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      GECCO '23
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)31
      • Downloads (Last 6 weeks)3
      Reflects downloads up to 12 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Message-Passing Monte Carlo: Generating low-discrepancy point sets via graph neural networksProceedings of the National Academy of Sciences10.1073/pnas.2409913121121:40Online publication date: 26-Sep-2024
      • (2024)Empirical Analysis of the Dynamic Binary Value Problem with IOHprofilerParallel Problem Solving from Nature – PPSN XVIII10.1007/978-3-031-70068-2_2(20-35)Online publication date: 7-Sep-2024

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media