Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3583131.3590517acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Evolutionary Diversity Optimisation in Constructing Satisfying Assignments

Published: 12 July 2023 Publication History

Abstract

Computing diverse solutions for a given problem, in particular evolutionary diversity optimisation (EDO), is a hot research topic in the evolutionary computation community. This paper studies the Boolean satisfiability problem (SAT) in the context of EDO. SAT is of great importance in computer science and differs from the other problems studied in EDO literature, such as KP and TSP. SAT is heavily constrained, and the conventional evolutionary operators are inefficient in generating SAT solutions. Our approach avails of the following characteristics of SAT: 1) the possibility of adding more constraints (clauses) to the problem to forbid solutions or to fix variables, and 2) powerful solvers in the literature, such as minisat. We utilise such a solver to construct a diverse set of solutions.
Moreover, maximising diversity provides us with invaluable information about the solution space of a given SAT problem, such as how large the feasible region is. In this study, we introduce evolutionary algorithms (EAs) employing a well-known SAT solver to maximise diversity among a set of SAT solutions explicitly. The experimental investigations indicate the introduced algorithms' capability to maximise diversity among the SAT solutions.

References

[1]
Bradley Alexander, James Kortman, and Aneta Neumann. 2017. Evolution of artistic image variants through feature based diversity optimisation. In GECCO. ACM, 171--178.
[2]
Maxime Allard, Simón C. Smith, Konstantinos I. Chatzilygeroudis, and Antoine Cully. 2022. Hierarchical quality-diversity for online damage recovery. In GECCO. ACM, 58--67.
[3]
Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. 2009. Towards IndustrialLike Random SAT Instances. In IJCAI. 387--392.
[4]
Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neumann, and Heike Trautmann. 2019. Evolving diverse TSP instances by means of novel and creative mutation operators. In Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. 58--71.
[5]
Jakob Bossek, Aneta Neumann, and Frank Neumann. 2021. Breeding diverse packings for the knapsack problem by means of diversity-tailored evolutionary algorithms. In GECCO. ACM, 556--564.
[6]
Jakob Bossek and Frank Neumann. 2021. Evolutionary diversity optimization and the minimum spanning tree problem. In GECCO. ACM, 198--206.
[7]
Jakob Bossek and Frank Neumann. 2022. Exploring the feature space of TSP instances using quality diversity. In GECCO. ACM, 186--194.
[8]
Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y. Vardi. 2015. On Parallel Scalable Uniform SAT Witness Generation. In TACAS (Lecture Notes in Computer Science, Vol. 9035). Springer, 304--319.
[9]
Stephen A. Cook. 1971. The Complexity of Theorem-Proving Procedures. In STOC. ACM, 151--158.
[10]
Martin Davis, George Logemann, and Donald W. Loveland. 1962. A machine program for theorem-proving. Commun. ACM 5, 7 (1962), 394--397.
[11]
Anh Viet Do, Jakob Bossek, Aneta Neumann, and Frank Neumann. 2020. Evolving diverse sets of tours for the travelling salesperson problem. In GECCO. ACM, 681--689.
[12]
Anh Viet Do, Mingyu Guo, Aneta Neumann, and Frank Neumann. 2022. Analysis of Evolutionary Diversity Optimization for Permutation Problems. ACM Trans. Evol. Learn. Optim. 2, 3 (2022), 11:1--11:27.
[13]
Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. 2018. Efficient sampling of SAT solutions for testing. In ICSE. ACM, 549--559.
[14]
Niklas Eén and Niklas Sörensson. 2003. An Extensible SAT-solver. In SAT (Lecture Notes in Computer Science, Vol. 2919). Springer, 502--518.
[15]
Matthew C. Fontaine, Ruilin Liu, Ahmed Khalifa, Jignesh Modi, Julian Togelius, Amy K. Hoover, and Stefanos Nikolaidis. 2021. Illuminating Mario Scenes in the Latent Space of a Generative Adversarial Network. In AAAI. AAAI Press, 5922--5930.
[16]
Matthew C. Fontaine, Julian Togelius, Stefanos Nikolaidis, and Amy K. Hoover. 2020. Covariance matrix adaptation for the rapid illumination of behavior space. In GECCO. ACM, 94--102.
[17]
Tobias Friedrich, Anton Krohmer, Ralf Rothenberger, Thomas Sauerwald, and Andrew M. Sutton. 2017. Bounds on the Satisfiability Threshold for Power Law Distributed Random SAT. In ESA (LIPIcs, Vol. 87). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 37:1--37:15.
[18]
Tobias Friedrich, Anton Krohmer, Ralf Rothenberger, and Andrew M. Sutton. 2017. Phase Transitions for Scale-Free SAT Formulas. In AAAI. AAAI Press, 3893--3899.
[19]
Wanru Gao, Samadhi Nallaperuma, and Frank Neumann. 2021. Feature-Based Diversity Optimization for Problem Instance Classification. Evol. Comput. 29, 1 (2021), 107--128.
[20]
Xiaodong Li, Michael G. Epitropakis, Kalyanmoy Deb, and Andries P. Engelbrecht. 2017. Seeking Multiple Solutions: An Updated Survey on Niching Methods and Their Applications. IEEE Trans. Evol. Comput. 21, 4 (2017), 518--538.
[21]
Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference DAC. ACM, 530--535.
[22]
Alexander Nadel. 2011. Generating Diverse Solutions in SAT. In SAT (Lecture Notes in Computer Science, Vol. 6695). Springer, 287--301.
[23]
Aneta Neumann, Denis Antipov, and Frank Neumann. 2022. Coevolutionary Pareto diversity optimization. In GECCO. ACM, 832--839.
[24]
Aneta Neumann, Jakob Bossek, and Frank Neumann. 2021. Diversifying greedy sampling and evolutionary diversity optimisation for constrained monotone submodular functions. In GECCO. ACM, 261--269.
[25]
Aneta Neumann, Wanru Gao, Carola Doerr, Frank Neumann, and Markus Wagner. 2018. Discrepancy-based evolutionary diversity optimization. In GECCO. ACM, 991--998.
[26]
Aneta Neumann, Wanru Gao, Markus Wagner, and Frank Neumann. 2019. Evolutionary diversity optimization using multi-objective indicators. In GECCO. ACM, 837--845.
[27]
Adel Nikfarjam, Jakob Bossek, Aneta Neumann, and Frank Neumann. 2021. Computing diverse sets of high quality TSP tours by EAX-based evolutionary diversity optimisation. In FOGA. ACM, 9:1--9:11.
[28]
Adel Nikfarjam, Jakob Bossek, Aneta Neumann, and Frank Neumann. 2021. Entropy-based evolutionary diversity optimisation for the traveling salesperson problem. In GECCO. ACM, 600--608.
[29]
Adel Nikfarjam, Anh Viet Do, and Frank Neumann. 2022. Analysis of Quality Diversity Algorithms for the Knapsack Problem. In PPSN (2) (Lecture Notes in Computer Science, Vol. 13399). Springer, 413--427.
[30]
Adel Nikfarjam, Amirhossein Moosavi, Aneta Neumann, and Frank Neumann. 2022. Computing High-Quality Solutions for the Patient Admission Scheduling Problem Using Evolutionary Diversity Optimisation. In PPSN (1) (Lecture Notes in Computer Science, Vol. 13398). Springer, 250--264.
[31]
Adel Nikfarjam, Aneta Neumann, Jakob Bossek, and Frank Neumann. 2022. Co-evolutionary Diversity Optimisation for the Traveling Thief Problem. In PPSN (1) (Lecture Notes in Computer Science, Vol. 13398). Springer, 237--249.
[32]
Adel Nikfarjam, Aneta Neumann, and Frank Neumann. 2022. Evolutionary diversity optimisation for the traveling thief problem. In GECCO. ACM, 749--756.
[33]
Adel Nikfarjam, Aneta Neumann, and Frank Neumann. 2022. On the use of quality diversity algorithms for the traveling thief problem. In GECCO. ACM, 260--268.
[34]
Nemanja Rakicevic, Antoine Cully, and Petar Kormushev. 2021. Policy manifold search: exploring the manifold hypothesis for diversity-based neuroevolution. In GECCO. ACM, 901--909.
[35]
João P. Marques Silva and Karem A. Sakallah. 1999. GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Trans. Computers 48, 5 (1999), 506--521.
[36]
Kirby Steckel and Jacob Schrum. 2021. Illuminating the space of beatable lode runner levels produced by various generative adversarial networks. In GECCO Companion. ACM, 111--112.
[37]
Tamara Ulrich and Lothar Thiele. 2011. Maximizing population diversity in single-objective optimization. In GECCO. ACM, 641--648.
[38]
Enrico Zardini, Davide Zappetti, Davide Zambrano, Giovanni Iacca, and Dario Floreano. 2021. Seeking quality diversity in evolutionary co-design of morphology and control of soft tensegrity modular robots. In GECCO. ACM, 189--197.

Cited By

View all
  • (2024)Guiding Quality Diversity on Monotone Submodular Functions: Customising the Feature Space by Adding Boolean ConjunctionsProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3654160(1614-1622)Online publication date: 14-Jul-2024
  • (2024)Optimizing Cyber Defense in Dynamic Active Directories Through Reinforcement LearningComputer Security – ESORICS 202410.1007/978-3-031-70879-4_17(332-352)Online publication date: 5-Sep-2024
  • (2024)Runtime Analysis of Evolutionary Diversity Optimization on a Tri-Objective Version of the (LeadingOnes, TrailingZeros) ProblemParallel Problem Solving from Nature – PPSN XVIII10.1007/978-3-031-70071-2_2(19-35)Online publication date: 7-Sep-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '23: Proceedings of the Genetic and Evolutionary Computation Conference
July 2023
1667 pages
ISBN:9798400701191
DOI:10.1145/3583131
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 July 2023

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. SAT
  2. evolutionary diversity optimisation

Qualifiers

  • Research-article

Funding Sources

Conference

GECCO '23
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)47
  • Downloads (Last 6 weeks)1
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Guiding Quality Diversity on Monotone Submodular Functions: Customising the Feature Space by Adding Boolean ConjunctionsProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3654160(1614-1622)Online publication date: 14-Jul-2024
  • (2024)Optimizing Cyber Defense in Dynamic Active Directories Through Reinforcement LearningComputer Security – ESORICS 202410.1007/978-3-031-70879-4_17(332-352)Online publication date: 5-Sep-2024
  • (2024)Runtime Analysis of Evolutionary Diversity Optimization on a Tri-Objective Version of the (LeadingOnes, TrailingZeros) ProblemParallel Problem Solving from Nature – PPSN XVIII10.1007/978-3-031-70071-2_2(19-35)Online publication date: 7-Sep-2024
  • (2024)Local Optima in Diversity Optimization: Non-trivial Offspring Population is EssentialParallel Problem Solving from Nature – PPSN XVIII10.1007/978-3-031-70071-2_12(181-196)Online publication date: 7-Sep-2024

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media