Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3588432.3591502acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article
Open access

A Fast Geometric Multigrid Method for Curved Surfaces

Published: 23 July 2023 Publication History

Abstract

We introduce a geometric multigrid method for solving linear systems arising from variational problems on surfaces in geometry processing, Gravo MG. Our scheme uses point clouds as a reduced representation of the levels of the multigrid hierarchy to achieve a fast hierarchy construction and to extend the applicability of the method from triangle meshes to other surface representations like point clouds, nonmanifold meshes, and polygonal meshes. To build the prolongation operators, we associate each point of the hierarchy to a triangle constructed from points in the next coarser level. We obtain well-shaped candidate triangles by computing graph Voronoi diagrams centered around the coarse points and determining neighboring Voronoi cells. Our selection of triangles ensures that the connections of each point to points at adjacent coarser and finer levels are balanced in the tangential directions. As a result, we obtain sparse prolongation matrices with three entries per row and fast convergence of the solver. Code is available at https://graphics.tudelft.nl/gravo_mg.

Supplemental Material

MP4 File
presentation
PDF File
Extended comparisons for more input shapes and convergence plots.
PDF File
Extended comparisons

References

[1]
Burak Aksoylu, Andrei Khodakovsky, and Peter Schröder. 2005. Multilevel Solvers for Unstructured Surface Meshes. SIAM J. Sci. Comput. 26, 4 (2005), 1146–1165. https://doi.org/10.1137/S1064827503430138
[2]
Marc Alexa and Max Wardetzky. 2011. Discrete Laplacians on General Polygonal Meshes. ACM Trans. Graph. 30, 4 (2011), 102:1–102:10.
[3]
Nathan Bell, Luke N. Olson, and Jacob Schroder. 2022. PyAMG: Algebraic Multigrid Solvers in Python. Journal of Open Source Software 7, 72 (2022), 4142. https://doi.org/10.21105/joss.04142
[4]
James H Bramble. 1993. Multigrid Methods. Chapman and Hall/CRC.
[5]
Achi Brandt. 1986. Algebraic multigrid theory: The symmetric case. Appl. Math. Comput. 19, 1 (1986), 23–56. https://doi.org/10.1016/0096-3003(86)90095-0
[6]
Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. 2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35, 3 (2008), 22:1–22:14. https://doi.org/10.1145/1391989.1391995
[7]
Timothy A. Davis, Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar. 2016. A survey of direct methods for sparse linear systems. Acta Numer. 25 (2016), 383–566. https://doi.org/10.1017/S0962492916000076
[8]
Christian Dick, Marcus Rogowsky, and Rüdiger Westermann. 2016. Solving the Fluid Pressure Poisson Equation Using Multigrid - Evaluation and Improvements. IEEE Trans. Vis. Comput. Graph. 22, 11 (2016), 2480–2492. https://doi.org/10.1109/TVCG.2015.2511734
[9]
Martin Erwig. 2000. The graph Voronoi diagram with applications. Networks 36, 3 (2000), 156–163.
[10]
Bianca Falcidieno. 2007. Bringing the Semantics into Digital Shapes: the AIM@SHAPE Approach. In Eurographics Italian Chapter Conference, Raffaele De Amicis and Giuseppe Conti (Eds.). The Eurographics Association. https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2007/103-106
[11]
Joachim Georgii and Rüdiger Westermann. 2006. A multigrid framework for real-time simulation of deformable bodies. Comput. Graph. 30, 3 (2006), 408–415. https://doi.org/10.1016/j.cag.2006.02.016
[12]
Seth Green, George Turkiyyah, and Duane W. Storti. 2002. Subdivision-based multilevel methods for large scale engineering simulation of thin shells. In ACM Symposium on Solid Modeling and Applications. ACM, 265–272. https://doi.org/10.1145/566282.566321
[13]
Gaël Guennebaud, Benoît Jacob, 2010. Eigen v3. http://eigen.tuxfamily.org.
[14]
Wolfgang Hackbusch. 1985. Multi-grid methods and applications. Springer series in computational mathematics, Vol. 4. Springer.
[15]
Philipp Herholz and Marc Alexa. 2018. Factor once: reusing cholesky factorizations on sub-meshes. ACM Trans. Graph. 37, 6 (2018), 230. https://doi.org/10.1145/3272127.3275107
[16]
Philipp Herholz and Olga Sorkine-Hornung. 2020. Sparse cholesky updates for interactive mesh parameterization. ACM Trans. Graph. 39, 6 (2020), 202:1–202:14. https://doi.org/10.1145/3414685.3417828
[17]
Hugues Hoppe. 1996. Progressive Meshes. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, New Orleans, LA, USA, August 4-9, 1996, John Fujii (Ed.). ACM, 99–108. https://dl.acm.org/citation.cfm?id=237216
[18]
Intel Corporation. 2023. oneMKL PARDISO - Parallel Direct Sparse Solver Interface. https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-1/onemkl-pardiso-parallel-direct-sparse-solver-iface.html. Accessed: April 17, 2023.
[19]
In-Yong Jeon, Kwang-Jin Choi, Tae-Yong Kim, Bong-Ouk Choi, and Hyeong-Seok Ko. 2013. Constrainable Multigrid for Cloth. Comput. Graph. Forum 32, 7 (2013), 31–39. https://doi.org/10.1111/cgf.12209
[20]
Misha Kazhdan and Hugues Hoppe. 2019. An Adaptive Multi-Grid Solver for Applications in Computer Graphics. Comput. Graph. Forum 38, 1 (2019), 138–150. https://doi.org/10.1111/cgf.13449
[21]
Michael Kazhdan, Jake Solomon, and Mirela Ben-Chen. 2012. Can mean-curvature flow be modified to be non-singular?. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 1745–1754.
[22]
Michael M. Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface reconstruction. In Symposium on Geometry Processing(ACM International Conference Proceeding Series, Vol. 256). Eurographics Association, 61–70.
[23]
Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and Temples: Benchmarking Large-Scale Scene Reconstruction. ACM Transactions on Graphics 36, 4 (2017).
[24]
Leif Kobbelt, Swen Campagna, and Hans-Peter Seidel. 1998. A General Framework for Mesh Decimation. In Proceedings of the Graphics Interface 1998 Conference, June 18-20, 1998, Vancouver, BC, Canada, Wayne A. Davis, Kellogg S. Booth, and Alain Fournier (Eds.). Canadian Human-Computer Communications Society, 43–50.
[25]
Dilip Krishnan, Raanan Fattal, and Richard Szeliski. 2013. Efficient preconditioning of laplacian matrices for computer graphics. ACM Trans. Graph. 32, 4 (2013), 142:1–142:15. https://doi.org/10.1145/2461912.2461992
[26]
Dilip Krishnan and Richard Szeliski. 2011. Multigrid and multilevel preconditioners for computational photography. ACM Trans. Graph. 30, 6 (2011), 177. https://doi.org/10.1145/2070781.2024211
[27]
Jian Liang and Hongkai Zhao. 2013. Solving Partial Differential Equations on Point Clouds. SIAM J. Sci. Comput. 35 (2013), A1461–A1486.
[28]
Hsueh-Ti Derek Liu, Jiayi Eris Zhang, Mirela Ben-Chen, and Alec Jacobson. 2021. Surface Multigrid via Intrinsic Prolongation. ACM Trans. Graph. 40, 4 (2021).
[29]
Aleka McAdams, Eftychios Sifakis, and Joseph Teran. 2010. A Parallel Multigrid Poisson Solver for Fluids Simulation on Large Grids. In Symposium on Computer Animation. Eurographics Association, 65–73.
[30]
Ahmad Nasikun and Klaus Hildebrandt. 2022. The Hierarchical Subspace Iteration Method for Laplace–Beltrami Eigenproblems. ACM Trans. Graph. 41, 2 (2022), 17:1–17:14. https://doi.org/10.1145/3495208
[31]
Xinlai Ni, Michael Garland, and John C. Hart. 2004. Fair morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. 23, 3 (2004), 613–622. https://doi.org/10.1145/1015706.1015769
[32]
Miguel A. Otaduy, Daniel Germann, Stephane Redon, and Markus H. Gross. 2007. Adaptive deformations with fast tight bounds. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2007, San Diego, California, USA, August 2-4, 2007, Michael Gleicher and Daniel Thalmann (Eds.). Eurographics Association, 181–190. https://doi.org/10.2312/SCA/SCA07/181-190
[33]
Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing. ACM Trans. Graph. 22, 3 (2003), 313–318. https://doi.org/10.1145/882262.882269
[34]
Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2 (1993), 15–36.
[35]
Nicolas Ray and Bruno Lévy. 2003. Hierarchical Least Squares Conformal Map. In Pacific Conference on Graphics and Applications. IEEE, 263–270. https://doi.org/10.1109/PCCGA.2003.1238268
[36]
Nicholas Sharp and Keenan Crane. 2020. A Laplacian for Nonmanifold Triangle Meshes. Comput. Graph. Forum 39, 5 (2020), 69–80. https://doi.org/10.1111/cgf.14069
[37]
Lin Shi, Yizhou Yu, Nathan Bell, and Wei-Wen Feng. 2006. A fast multigrid algorithm for mesh deformation. ACM Trans. Graph. 25, 3 (2006), 1108–1117. https://doi.org/10.1145/1141911.1142001
[38]
Xiaohan Shi, Hujun Bao, and Kun Zhou. 2009. Out-of-core multigrid solver for streaming meshes. ACM Trans. Graph. 28, 5 (2009), 173. https://doi.org/10.1145/1618452.1618519
[39]
Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012. Computational design of rubber balloons. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 835–844.
[40]
K. Stüben. 2001. A review of algebraic multigrid. J. Comput. Appl. Math. 128, 1 (2001), 281–309. https://doi.org/10.1016/S0377-0427(00)00516-1 Numerical Analysis 2000. Vol. VII: Partial Differential Equations.
[41]
Shaodong Wang, Shuai Ma, Hui Zhao, and Wencheng Wang. 2022. A multigrid approach for generating harmonic measured foliations. Computers & Graphics 102 (2022), 380–389. https://doi.org/10.1016/j.cag.2021.10.003
[42]
Zhendong Wang, Longhua Wu, Marco Fratarcangeli, Min Tang, and Huamin Wang. 2018. Parallel Multigrid for Nonlinear Cloth Simulation. Comput. Graph. Forum 37, 7 (2018), 131–141. https://doi.org/10.1111/cgf.13554
[43]
Max Wardetzky, Miklós Bergou, David Harmon, Denis Zorin, and Eitan Grinspun. 2007. Discrete quadratic curvature energies. Computer Aided Geometric Design 24, 8-9 (2007), 499–518.

Cited By

View all
  • (2024)Super-Resolution Cloth Animation with Spatial and Temporal CoherenceACM Transactions on Graphics10.1145/365814343:4(1-14)Online publication date: 19-Jul-2024

Index Terms

  1. A Fast Geometric Multigrid Method for Curved Surfaces

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGGRAPH '23: ACM SIGGRAPH 2023 Conference Proceedings
    July 2023
    911 pages
    ISBN:9798400701597
    DOI:10.1145/3588432
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 23 July 2023

    Check for updates

    Author Tags

    1. Laplace matrix
    2. Poisson problems
    3. geometric multigrid
    4. geometry processing
    5. multigrid methods

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    SIGGRAPH '23
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)610
    • Downloads (Last 6 weeks)54
    Reflects downloads up to 02 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Super-Resolution Cloth Animation with Spatial and Temporal CoherenceACM Transactions on Graphics10.1145/365814343:4(1-14)Online publication date: 19-Jul-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media