Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3589334.3645506acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article
Open access

Using Model Calibration to Evaluate Link Prediction in Knowledge Graphs

Published: 13 May 2024 Publication History

Abstract

Link prediction models assign scores to predict new, plausible edges to complete knowledge graphs. In link prediction evaluation, the score of an existing edge (positive) is ranked w.r.t. the scores of its synthetically corrupted counterparts (negatives). An accurate model ranks positives higher than negatives, assuming ascending order. Since the number of negatives are typically large for a single positive, link prediction evaluation is computationally expensive. As far as we know, only one approach has proposed to replace rank aggregations by a distance between sample positives and negatives. Unfortunately, the distance does not consider individual ranks, so edges in isolation cannot be assessed. In this paper, we propose an alternative protocol based on posterior probabilities of positives rather than ranks. A calibration function assigns posterior probabilities to edges that measure their plausibility. We propose to assess our alternative protocol in various ways, including whether expected semantics are captured when using different strategies to synthetically generate negatives. Our experiments show that posterior probabilities and ranks are highly correlated. Also, the time reduction of our alternative protocol is quite significant: more than 77% compared to rank-based evaluation. We conclude that link prediction evaluation based on posterior probabilities is viable and significantly reduces computational costs.

Supplemental Material

MP4 File
Supplemental video

References

[1]
Ralph Abboud, .Ismail. Ilkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. 2020. BoxE: A Box Embedding Model for Knowledge Base Completion. In NeurIPS. 9649--9661.
[2]
Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and Chengkai Li. 2020. Realistic Re-evaluation of Knowledge Graph Completion Methods: An Experimental Study. In SIGMOD. 1995--2010.
[3]
Mehdi Ali, Max Berrendorf, Mikhail Galkin, Veronika Thost, Tengfei Ma, Volker Tresp, and Jens Lehmann. 2022. Improving Inductive Link Prediction Using Hyper-Relational Facts (Extended Abstract). In IJCAI. 5259--5263.
[4]
Iti Bansal, Sudhanshu Tiwari, and Carlos R. Rivero. 2020. The Impact of Negative Triple Generation Strategies and Anomalies on Knowledge Graph Completion. In CIKM. 45--54.
[5]
Anson Bastos, Kuldeep Singh, Abhishek Nadgeri, Johannes Hoffart, Manish Singh, and Toyotaro Suzumura. 2023. Can Persistent Homology provide an efficient alternative for Evaluation of Knowledge Graph Completion Methods?. In TheWebConf. 2455--2466.
[6]
Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge. In SIGMOD. 1247--1250.
[7]
Stephen Bonner, Ian P. Barrett, Cheng Ye, Rowan Swiers, Ola Engkvist, and William L. Hamilton. 2021. Understanding the Performance of Knowledge Graph Embeddings in Drug Discovery. CoRR, Vol. abs/2105.10488 (2021).
[8]
Antoine Bordes and Evgeniy Gabrilovich. 2014. Constructing and mining web-scale knowledge graphs: KDD 2014 tutorial. In KDD. 1967.
[9]
Antoine Bordes, Nicolas Usunier, Alberto Garc'i a-Durá n, Jason Weston, and Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational Data. In NeurIPS. 2787--2795.
[10]
Xuelu Chen, Muhao Chen, Weijia Shi, Yizhou Sun, and Carlo Zaniolo. 2019. Embedding Uncertain Knowledge Graphs. In AAAI. 3363--3370.
[11]
The UniProt Consortium. 2018. UniProt: A worldwide hub of protein knowledge. NAR, Vol. 47, D1 (11 2018), D506--D515.
[12]
Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018. Convolutional 2D Knowledge Graph Embeddings. In AAAI. 1811--1818.
[13]
Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion. In KDD. 601--610.
[14]
Xin Luna Dong. 2019. Building a Broad Knowledge Graph for Products. In ICDE. 25.
[15]
Norman R. Draper and Harry Smith. 1998. Applied Regression Analysis, 3$^rd$ Edition. Wiley.
[16]
Takuma Ebisu and Ryutaro Ichise. 2018. TorusE: Knowledge Graph Embedding on a Lie Group. In AAAI. 1819--1826.
[17]
Norbert Fuhr. 2017. Some Common Mistakes In IR Evaluation, And How They Can Be Avoided. SIGIR Forum, Vol. 51, 3 (2017), 32--41.
[18]
Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen, Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini. 2017. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife, Vol. 6 (2017), e26726.
[19]
Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. 2022. Knowledge Graphs. ACM Comput. Surv., Vol. 54, 4 (2022), 71:1--71:37.
[20]
Charles Tapley Hoyt, Max Berrendorf, Mikhail Galkin, Volker Tresp, and Benjamin M. Gyori. 2022. A Unified Framework for Rank-based Evaluation Metrics for Link Prediction in Knowledge Graphs. CoRR, Vol. abs/2203.07544 (2022).
[21]
Narayanan Asuri Krishnan and Carlos R. Rivero. 2023. A Model-Agnostic Method to Interpret Link Prediction Evaluation of Knowledge Graph Embeddings. In CIKM. 1107--1116.
[22]
Meelis Kull, Telmo de Menezes e Silva Filho, and Peter A. Flach. 2017. Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers. In AISTATS (Proceedings of Machine Learning Research, Vol. 54). 623--631.
[23]
Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. 2015. YAGO3: A Knowledge Base from Multilingual Wikipedias. In CIDR.
[24]
George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM, Vol. 38, 11 (1995), 39--41.
[25]
Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. 2016. Holographic Embeddings of Knowledge Graphs. In AAAI. 1955--1961.
[26]
Alexandru Niculescu-Mizil and Rich Caruana. 2005. Predicting Good Probabilities With Supervised Learning. In ICML, Vol. 119. 625--632.
[27]
Natalya Fridman Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and Jamie Taylor. 2019. Industry-scale knowledge graphs: lessons and challenges. CACM, Vol. 62, 8 (2019), 36--43.
[28]
Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches and evaluation methods. Sem. Web., Vol. 8, 3 (2017), 489--508.
[29]
Pouya Pezeshkpour, Yifan Tian, and Sameer Singh. 2020. Revisiting Evaluation of Knowledge Base Completion Models. In AKBC.
[30]
Emmanouil Antonios Platanios, Abulhair Saparov, and Tom M. Mitchell. 2020. Jelly Bean World: A Testbed for Never-Ending Learning. In ICLR.
[31]
John C. Platt. 1999. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. In Advances in Large Margin Classifiers, Alexander J. Smola, Peter Bartlett, Bernhard Schölkopf, and Dale Schuurmans (Eds.). MIT Press, Chapter 10, 61--74.
[32]
Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo. 2021. Knowledge Graph Embedding for Link Prediction: A Comparative Analysis. TKDD, Vol. 15, 2 (2021), 14:1--14:49.
[33]
Maya Rotmensch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng, and David Sontag. 2017. Learning a Health Knowledge Graph from Electronic Medical Records. Sci. Rep., Vol. 7 (2017), 5994. Issue 1.
[34]
Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. 2020. You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings. In ICLR.
[35]
Afshin Sadeghi, Hirra Malik, Diego Collarana, and Jens Lehmann. 2021. Relational Pattern Benchmarking on the Knowledge Graph Link Prediction Task. In NeurIPS Datasets and Benchmarks.
[36]
Tara Safavi, Danai Koutra, and Edgar Meij. 2020. Evaluating the Calibration of Knowledge Graph Embeddings for Trustworthy Link Prediction. In EMNLP. 8308--8321.
[37]
Fernando Sola, Daniel Ayala, Rafael Ayala, Inma Herná ndez, Carlos R. Rivero, and David Ruiz. 2023. AYNEXT - tools for streamlining the evaluation of link prediction techniques. SoftwareX, Vol. 23 (2023), 101474.
[38]
Tengwei Song, Jie Luo, and Lei Huang. 2021. Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding. In NeurIPS. 24695--24706.
[39]
Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of semantic knowledge. In WWW. 697--706.
[40]
Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. In ICLR Posters.
[41]
Pedro Tabacof and Luca Costabello. 2020. Probability Calibration for Knowledge Graph Embedding Models. In ICLR.
[42]
Sudhanshu Tiwari, Iti Bansal, and Carlos R. Rivero. 2021. Revisiting the Evaluation Protocol of Knowledge Graph Completion Methods for Link Prediction. In TheWebConf. 809--820.
[43]
Kristina Toutanova and Danqi Chen. 2015. Observed Versus Latent Features for Knowledge Base and Text Inference. In ACL Workshops. 57--66.
[44]
Thé o Trouillon, Johannes Welbl, Sebastian Riedel, É ric Gaussier, and Guillaume Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In ICML, Vol. 48. 2071--2080.
[45]
Brian Walsh, Sameh K. Mohamed, and V'i t Nová cek. 2020. BioKG: A Knowledge Graph for Relational Learning On Biological Data. In CIKM. 3173--3180.
[46]
Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge Graph Embedding: A Survey of Approaches and Applications. TKDE, Vol. 29, 12 (2017), 2724--2743.
[47]
Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning. In EMNLP. 564--573.
[48]
R. M. B. Young. [n.,d.]. Decomposition of the Brier Score for Weighted Forecast-Verification Pairs. RMetS, Vol. 136, 650 ( [n.,d.]), 1364--1370.
[49]
Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019. Quaternion Knowledge Graph Embeddings. In NeurIPS. 2731--2741.
[50]
Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie Wang. 2020. Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction. In AAAI. 3065--3072.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WWW '24: Proceedings of the ACM Web Conference 2024
May 2024
4826 pages
ISBN:9798400701719
DOI:10.1145/3589334
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 May 2024

Check for updates

Author Tags

  1. knowledge graph embedding
  2. link prediction
  3. model calibration

Qualifiers

  • Research-article

Conference

WWW '24
Sponsor:
WWW '24: The ACM Web Conference 2024
May 13 - 17, 2024
Singapore, Singapore

Acceptance Rates

Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 392
    Total Downloads
  • Downloads (Last 12 months)392
  • Downloads (Last 6 weeks)67
Reflects downloads up to 04 Feb 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media