Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Analysis of Cursive Text Recognition Systems: A Systematic Literature Review

Published: 20 July 2023 Publication History

Abstract

Regional and cultural diversities around the world have given birth to a large number of writing systems and scripts, which consist of varying character sets. Developing an optimal character recognition for such a varying and large character set is a challenging task. Unlimited variations in handwritten text due to mood swings, varying writing styles, changes in medium of writing, and many more puzzle the research community. To overcome this problem, researchers have proposed various techniques for the automatic recognition of cursive languages like Urdu, Pashto, and Arabic. With the passage of time, the field of text recognition matured, and the number of publications exponentially increased in the targeted field. It is very difficult to find all the techniques developed, calculate the time and resource consumptions, and understand the cost–benefit tradeoffs among these techniques. These tradeoffs resist making this technology able for practical use. To address these tradeoffs, this article systematic analysis to identify gaps in the literature and suggest new enhanced solution accordingly. A total of 153 of the most relevant articles from 2008 to 2022 are analyzed in this systematic literature review (SLR) work. This systematic review process shows (1) the list of techniques suggested for cursive text recognition purposes and its capabilities, (2) set of feature extraction techniques proposed, and (3) implementation tools used to design and simulate the empirical studies in this specialized field. We have also discussed the emerging trends and described their implications for the research community in this specialized domain. This systematic assessment will ultimately help researchers to perform an overview of the existing character/text recognition approaches, recognition capabilities, and time consumption and subsequently identify the areas that requires a significant attention in the near future.

References

[1]
T. Ghosh, S. Sen, S. M. Obaidullah, K. C. Santosh, K. Roy, and U. Pal. 2022. Advances in online handwritten recognition in the last decades. Comput. Sci. Rev. 46 (2022), 100515.
[2]
N. Majid and E. H. B. Smith. 2022. Character spotting and autonomous tagging: offline handwriting recognition for Bangla, Korean and other alphabetic scripts. Int. J. Doc. Anal. Recogn. 25, 4 (2022), 245–263.
[3]
S. Khan, A. Hafeez, H. Ali, S. Nazir, and A. Hussain. 2020. Pioneer dataset and recognition of Handwritten Pashto characters using Convolution Neural Networks. Meas. Contr. 53, 9-10 (2020), 2041–2054.
[4]
A. Rasheed, N. Ali, B. Zafar, A. Shabbir, M. Sajid, and M. T. Mahmood. 2022. Handwritten Urdu characters and digits recognition using transfer learning and augmentation with AlexNet. IEEE Access 10 (2022), 102629–102645.
[5]
M. Elkhayati, Y. Elkettani, and M. Mourchid. 2022. Segmentation of handwritten arabic graphemes using a directed convolutional neural network and mathematical morphology operations. Pattern Recogn. 122 (2022), 108288.
[6]
J. Memon, M. Sami, R. A. Khan, and M. Uddin. 2020. Handwritten optical character recognition (OCR): A comprehensive systematic literature review (SLR). IEEE Access 8 (2020), 142642–142668.
[7]
N. Alrobah and S. Albahli. 2022. Arabic handwritten recognition using deep learning: A survey. Arab. J. Sci. Eng. (2022), 1–21.
[8]
B. Kitchenham and S. Charters. 2007. Guidelines for performing systematic literature reviews in software engineering. In Evidence-Based Software Engineering.
[9]
G. A. Abandah, F. T. Jamour, and E. A. Qaralleh. 2014. Recognizing handwritten Arabic words using grapheme segmentation and recurrent neural networks. Int. J. Doc. Anal. Recogn. 17 (2014), 275–291.
[10]
A. AbdelRaouf, C. A. Higgins, T. Pridmore, and M. I. Khalil. 2016. Arabic character recognition using a Haar cascade classifier approach (HCC). Pattern Anal. Appl. 19 (2016), 411–426.
[11]
I. Abdelaziz, S. Abdou, and H. Al-Barhamtoshy. 2016. A large vocabulary system for Arabic online handwriting recognition. Pattern Anal. Appl. 19 (2016), 1129–1141.
[12]
J. H. AlKhateeb. 2015. A database for Arabic handwritten character recognition. Proc. Comput. Sci. 65 (2015), 556–561.
[13]
M. A. Bahashwan and S. A. A. Bakar. 2014. A database of Arabic handwritten characters. In Proceedings of the IEEE International Conference on Control System, Computing and Engineering (ICCSCE’14), 632–635.
[14]
S. Khan, H. Ali, Z. Ullah, N. Minallah, S. Maqsood, and A. Hafeez. 2018. KNN and ANN-based recognition of handwritten Pashto letters using zoning features. Mach. Learn. 9 (2018).
[15]
Y. M. Alginahi. 2013. A survey on Arabic character segmentation. Int. J. Doc. Anal. Recogn. 16 (2013), 105–126.
[16]
B. M. Al-Helali and S. A. Mahmoud. 2017. Arabic online handwriting recognition (AOHR): A survey. ACM Comput. Surv.) 50 (2017), 33.
[17]
A. Al-Salman and H. Alyahya. 2017. Arabic online handwriting recognition: A survey. In Proceedings of the 1st International Conference on Internet of Things and Machine Learning. 51.
[18]
A. Daud, W. Khan, and D. Che. 2017. Urdu language processing: A survey. Artif. Intell. Re. 47 (2017), 279–311.
[19]
M. Gagaoua, H. Ghilas, A. Tari, and M. Cheriet. 2017. Distribution, Directional, structural and concavity features for historical Arabic handwritten recognition: A comparative study. In Proceedings of the International Conference on Computing for Engineering and Sciences. 70–75.
[20]
D. Ghosh, T. Dube, and A. Shivaprasad. 2010. Script recognition—a review. IEEE Trans. Pattern Anal. Mach. Intell. 32 (2010), 2142–2161.
[21]
R. Hussain, A. Raza, I. Siddiqi, K. Khurshid, and C. Djeddi. 2015. A comprehensive survey of handwritten document benchmarks: Structure, usage and evaluation. J Image Video Proc. 2015, 46 (2015).
[22]
H. Kaur and M. Kumar. 2018. A comprehensive survey on word recognition for non-Indic and Indic scripts. Pattern Anal. Appl. 21 (2018), 897–929.
[23]
S. Kaur, S. Bawa, and R. Kumar. 2019. A survey of mono-and multi-lingual character recognition using deep and shallow architectures: Indic and non-indic scripts. Artif. Intell. Rev. (2019), 1–60.
[24]
S. Khan, S. Nazir, H. U. Khan, and A. Hussain. 2021. Pashto Characters recognition using multi-class enabled support vector machine. Comput. Mater. Contin. 67, 3 (2021), 2831–2844.
[25]
S. Naz, A. I. Umar, S. H. Shirazi, S. B. Ahmed, M. I. Razzak, and I. Siddiqi. 2016. Segmentation techniques for recognition of Arabic-like scripts: A comprehensive survey. Educat. Inf. Technol. 21 (2016), 1225–1241.
[26]
U. Pal, R. Jayadevan, and N. Sharma. 2012. Handwriting recognition in indian regional scripts: A survey of offline techniques. ACM Trans. As. Lang. Inf. Process. 11 (2012), 1.
[27]
M. T. Parvez and S. A. Mahmoud. 2013. Offline Arabic handwritten text recognition: A survey. ACM Comput. Surv.) 45, 23 (2013).
[28]
X. Peng, H. Cao, S. Setlur, V. Govindaraju, and P. Natarajan. 2013. Multilingual OCR research and applications: An overview. In Proceedings of the 4th International Workshop on Multilingual OCR. 1.
[29]
N. R. Soora and P. S. Deshpande. 2018. Review of feature extraction techniques for character recognition. IETE J. Res. 64 (2018), 280–295.
[30]
N. Tagougui, M. Kherallah, and A. M. Alimi. 2013. Online Arabic handwriting recognition: A survey. Int. J. Doc. Analy. Recogn. 16 (2013), 209–226.
[31]
I. Guellil, H. Saâdane, F. Azouaou, B. Gueni, and D. Nouvel. 2019. Arabic natural language processing: An overview. J. King Saud Univ.– Comput. Inf. Sci. (2019).
[32]
S. Khan and H. U. Khan. 2021. Isolated handwritten pashto characters recognition using KNN classifier. In Proceedings of the International Conference on Electrical, Computer and Energy Technologies (ICECET’21), 1–5. DOI:
[33]
P. Choudhary and N. Nain. 2016. A four-tier annotated urdu handwritten text image dataset for multidisciplinary research on urdu script. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 15 (2016), 1–23.
[34]
M. Shatnawi and S. Abdallah. 2016. Improving handwritten arabic character recognition by modeling human handwriting distortions. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 15 (2016), 3.
[35]
M. K. Malik. 2017. Urdu named entity recognition and classification system using artificial neural network. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 17 (2017), 2.
[36]
E. Al-Shammari and J. Lin. 2008. A novel Arabic lemmatization algorithm. In Proceedings of the 2nd Workshop on Analytics for Noisy Unstructured Text Data, 113–118.
[37]
Y. Hannad, I. Siddiqi, Y. El Merabet, and M. El Youssfi El Kettani. 2016. Arabic writer identification system using the histogram of oriented gradients (hog) of handwritten fragments. In Proceedings of the Mediterranean Conference on Pattern Recognition and Artificial Intelligence. 98–102.
[38]
I. Aljarrah, O. Al-Khaleel, K. Mhaidat, M. a. Alrefai, A. Alzu'bi, and M. Rabab'ah. 2012. Automated system for Arabic optical character recognition. In Proceedings of the 3rd International Conference on Information and Communication Systems. 5.
[39]
K. Narwani, H. Lin, S. Pirbhulal, and M. Hassan. 2022. Towards AI-Enabled approach for urdu text recognition: A legacy for urdu image apprehension. IEEE Access (2022). DOI:
[40]
S. Khan, H. U. Khan, and S. Nazir. 2021. Offline pashto characters dataset for OCR systems. Security and Communication Networks 2021 (2021), 7.
[41]
M. Siddiqui, I. Siddiqi, and K. Khurshid. 2018. Feature extraction for cursive language document images: Using discrete cosine transform, discrete wavelet transform and gabor filter. In Proceedings of the 2nd Mediterranean Conference on Pattern Recognition and Artificial Intelligence. 84–87.
[42]
J. Chen, H. Cao, R. Prasad, A. Bhardwaj, and P. Natarajan. 2010. Gabor features for offline Arabic handwriting recognition. In Proceedings of the 9th IAPR International Workshop on Document Analysis Systems. 53–58.
[43]
H. Althobaiti, K. Shah, and C. Lu. 2017. Isolated handwritten arabic character recognition using freeman chain code and tangent line. In Proceedings of the International Conference on Research in Adaptive and Convergent Systems. 79–84.
[44]
J. Huang, I. U. Haq, C. Dai, S. Khan, S. Nazir, and M. Imtiaz. 2021. Isolated handwritten pashto character recognition using a K-NN classification tool based on zoning and HOG feature extraction techniques. Complexity 2021 (2021), 8.
[45]
S. Panwar, M. Ahamed, and N. Nain. 2014. Ligature segmentation approach for urdu handwritten text documents. In Proceedings of the International Conference on Information and Communication Technology for Competitive Strategies. 1.
[46]
A. Lamsaf, M. Aitkerroum, S. Boulaknadel, and Y. Fakhri. 2018. Lines segmentation and word extraction of Arabic handwritten text. In Proceedings of the 3rd International Conference on Smart City Applications. 54.
[47]
A. A. Chandio, M. Asikuzzaman, M. Pickering, and M. Leghari. 2020. Cursive-text: A comprehensive dataset for end-to-end Urdu text recognition in natural scene images. Data Brief 31 (2020), 105749.
[48]
S. Khan and S. Nazir. 2021. Deep learning based pashto characters recognition: LSTM-Based Handwritten Pashto characters recognition system. Proc. Pakist. Acad. Sci.: A. Phys. Comput. Sci. 58, 3 (2021), 49–58.
[49]
S. A. Sattar, S. Haque, and M. K. Pathan. 2008. Nastaliq optical character recognition. In Proceedings of the 46th Annual Southeast Regional Conference on XX. 329–331.
[50]
U. Kamal, I. Siddiqi, H. Afzal, and A. U. Rahman. 2016. Pashto sentiment analysis using lexical features. In Proceedings of the Mediterranean Conference on Pattern Recognition and Artificial Intelligence. 121–124.
[51]
W. E. M. Hadi, M. A. Salam, and J. A. Al-Widian. 2010. Performance of NB and SVM classifiers in Islamic Arabic data. In Proceedings of the 1st International Conference on Intelligent Semantic Web-Services and Applications. 14.
[52]
H. Bouressace and J. Csirik. 2019. Printed arabic text database for automatic recognition systems. In Proceedings of the 5th International Conference on Computer and Technology Applications. 107–111.
[53]
A. R. Ali and M. Ijaz. 2009. Urdu text classification. In Proceedings of the 7th International Conference on Frontiers of Information Technology. 21.
[54]
G. S. Lehal. 2012. Choice of recognizable units for Urdu OCR. In Proceeding of the Workshop on Document Analysis and Recognition. 79–85.
[55]
Z. Shi, S. Setlur, and V. Govindaraju. 2012. Model based table cell detection and content extraction from degraded document images. In Proceeding of the Workshop on Document Analysis and Recognition. 62–67.
[56]
G. S. Lehal and A. Rana. 2013. Recognition of nastalique urdu ligatures. In Proceedings of the 4th International Workshop on Multilingual OCR. 7.
[57]
K. Subramanian, R. Prasad, and P. Natarajan. 2009. Robust named entity detection using an Arabic offline handwriting recognition system. In Proceedings of the 3rd Workshop on Analytics for Noisy Unstructured Text Data. 63–68.
[58]
M. Elleuch, R. Maalej, and M. Kherallah. 2016. A new design based-SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition. Proc. Comput. Sci. 80 (2016), 1712–1723.
[59]
J. Al Abodi and X. Li. 2014. An effective approach to offline Arabic handwriting recognition. Comput. Electr. Engineering 40 (2014), 1883–1901.
[60]
Z. Tamen, H. Drias, and D. Boughaci. 2017. An efficient multiple classifier system for Arabic handwritten words recognition. Pattern Recogn. Lett. 93 (2017), 123–132.
[61]
M. Y. Potrus, U. K. Ngah, and B. S. Ahmed. 2014. An evolutionary harmony search algorithm with dominant point detection for recognition-based segmentation of online Arabic text recognition. Ain Shams Eng. J. 5 (2014), 1129–1139.
[62]
I. Supriana and A. Nasution. 2013. Arabic character recognition system development. Proc. Technol. 11 (2013), 334–341.
[63]
M. Lutf, X. You, Y.-m. Cheung, and C. P. Chen. 2014. Arabic font recognition based on diacritics features. Pattern Recogn. 47 (2014), 672–684.
[64]
J. Ramdan. K. Omar, M. Faidzul, and A. Mady. 2013. Arabic handwriting database for text recognition. Proc. Technol. 11 (2013), 580–584.
[65]
M. T. Parvez and S. A. Mahmoud. 2013. Arabic handwriting recognition using structural and syntactic pattern attributes. Pattern Recogn. 46 (2013), 141–154.
[66]
M. M. Al-Tahrawi and S. N. Al-Khatib. 2015. Arabic text classification using Polynomial Networks. J. King Saud Univ. Comput. Inf. Sci. 27 (2015), 437–449.
[67]
H. A. Al Hamad and R. A. Zitar. 2010. Development of an efficient neural-based segmentation technique for Arabic handwriting recognition. Pattern Recogn. 43 (2010), 2773–2798.
[68]
D. AbuZeina and F. S. Al-Anzi. 2018. Employing fisher discriminant analysis for Arabic text classification. Comput. Electr. Eng. 66 (2018), 474–486.
[69]
M. Zahedi and S. Eslami. 2011. Farsi/Arabic optical font recognition using SIFT features. Proc. Comput. Sci. 3 (2011), 1055–1059.
[70]
S. L. Marie-Sainte and N. Alalyani. 2018. Firefly algorithm based feature selection for Arabic text classification. J. King Saud Univ. Comput. Inf. Sci. (2018).
[71]
E. Zarrouk, Y. BenAyed, and F. Gargouri. 2015. Graphical models for multi-dialect arabic isolated words recognition. Proced. Comput. Sci. 60 (2015), 508–516.
[72]
M. I. Razzak, F. Anwar, S. A. Husain, A. Belaid, and M. Sher. 2010. HMM and fuzzy logic: A hybrid approach for online Urdu script-based languages’ character recognition. Knowl.-Bas. Syst. 23 (2010), 914–923.
[73]
C. Boufenar, A. Kerboua, and M. Batouche. 2018. Investigation on deep learning for off-line handwritten Arabic character recognition. Cogn. Syst. Res. 50 (2018), 180–195.
[74]
S. Naz, A. I. Umar, R. Ahmad, S. B. Ahmed, S. H. Shirazi, I. Siddiqi, et al. 2016. Offline cursive Urdu-Nastaliq script recognition using multidimensional recurrent neural networks. Neurocomputing 177 (2016), 228–241.
[75]
M. Elleuch, N. Tagougui, and M. Kherallah. 2017. Optimization of DBN using regularization methods applied for recognizing arabic handwritten script. Proc. Comput. Sci. 108 (2017), 2292–2297.
[76]
A. M. A. Al-Aziz, M. Gheith, and A. F. Sayed. 2011. Recognition for old Arabic manuscripts using spatial gray level dependence (SGLD). Egypt. Inf. J. 12 (2011), 37–43.
[77]
R. Mouhcine, A. Mustapha, and M. Zouhir. 2018. Recognition of cursive Arabic handwritten text using embedded training based on HMMs. J. Electr. Syst. Inf. Technol. 5 (2018/09/01/2018), 245–251.
[78]
H. A. Al Hamad, L. Abualigah, M. Shehab, K. H. Al-Shqeerat, and M. Otair. 2022. Improved linear density technique for segmentation in Arabic handwritten text recognition. Multimedia Tools Appl. (2022), 1–28.
[79]
K. Saeed and M. Albakoor. 2009. Region growing based segmentation algorithm for typewritten and handwritten text recognition. Appl. Soft Comput. 9 (2009), 608–617.
[80]
M. Younes and Y. Abdellah. 2015. Segmentation of Arabic handwritten text to lines. Proc. Comput. Sci. 73 (2015), 115–121.
[81]
N. Aouadi, S. Amiri, and A. K. Echi. 2013. Segmentation of connected components in arabic handwritten documents. Proc. Technol 10 (2013), 738–746.
[82]
S. Naz, A. I. Umar, R. Ahmad, I. Siddiqi, S. B. Ahmed, M. I. Razzak, et al. 2017. Urdu Nastaliq recognition using convolutional–recursive deep learning. Neurocomputing 243 (2017), 80–87.
[83]
H. Akram and S. Khalid. 2017. Using features of local densities, statistics and HMM toolkit (HTK) for offline Arabic handwriting text recognition. J. Electr. Syst. Inf. Technol. 4 (2017), 387–396.
[84]
S. Naz, S. B. Ahmed, R. Ahmad, and M. I. Razzak. 2016. Zoning features and 2DLSTM for Urdu text-line recognition. Proc. Comput. Sci. 96 (2016), 16–22.
[85]
U. Porwal, Z. Shi, and S. Setlur. 2013. Machine learning in handwritten Arabic text recognition. In Handbook of Statistics, vol. 31, C. R. Rao and V. Govindaraju (Eds.). Elsevier, 443–469.
[86]
A. Fischer, V. Frinken, and H. Bunke. 2013. Hidden markov models for off-line cursive handwriting recognition. In Handbook of Statistics, vol. 31, C. R. Rao and V. Govindaraju (Eds.). Elsevier, 421–442.
[87]
H. Cao and P. Natarajan. 2014. Machine-printed character recognition. In Handbook of Document Image Processing and Recognition, D. Doermann and K. Tombre (Eds.). Springer, London, 331–358.
[88]
E. S. Atlam, K. Morita, M. Fuketa, and J. I. Aoe. 2011. A new approach for Arabic text classification using Arabic field—Association terms. J. Am. Soc. Inf. Sci. Technol. 62 (2011), 2266–2276.
[89]
A. ElAdel, M. Zaied, and C. Ben Amar. 2019. Trained convolutional neural network based on selected beta filters for Arabic letter recognition. Data Min. Knowl. Discov. 9 (2019), e1250.
[90]
N. Essa, E. El-Daydamony, and A. A. Mohamed. 2018. Enhanced technique for Arabic handwriting recognition using deep belief network and a morphological algorithm for solving ligature segmentation. ETRI J. 40 (2018), 774–787.
[91]
W. Khan, A. Daud, F. Alotaibi, N. Aljohani, and S. Arafat. 2019. Deep recurrent neural networks with word embeddings for Urdu named entity recognition. ETRI J. (2019).
[92]
K. Shaalan and H. Raza. 2009. NERA: Named entity recognition for Arabic. J. Am. Soc. Inf. Sci. Technol. 60 (2009), 1652–1663.
[93]
G. F. Hansen. 2010. Word recognition in Arabic as a foreign language. Mod. Lang. J. 94 (2010), 567–581.
[94]
B. Samir and B. Aoued. 2018. Features extraction and on-line recognition of isolated arabic characters. In Intelligent Natural Language Processing: Trends and Applications. Springer, Berlin, 481–500.
[95]
I. Ahmad, X. Wang, Y. hao Mao, G. Liu, H. Ahmad, and R. Ullah. 2018. Ligature based Urdu Nastaleeq sentence recognition using gated bidirectional long short term memory. Clust. Comput. 21 (2018), 703–714.
[96]
S. B. Ahmed, S. Naz, M. I. Razzak, S. F. Rashid, M. Z. Afzal, and T. M. Breuel. 2016. Evaluation of cursive and non-cursive scripts using recurrent neural networks. Neural Comput. App. 27 (2016), 603–613.
[97]
S. B. Ahmed, S. Naz, S. Swati, and M. I. Razzak. 2019. Handwritten Urdu character recognition using one-dimensional BLSTM classifier. Neural Comput. Appl. 31 (2019), 1143–1151.
[98]
C. Boufenar, M. Batouche, and M. Schoenauer. 2018. An artificial immune system for offline isolated handwritten arabic character recognition. Evolv. Syst. 9 (2018), 25–41.
[99]
D. Das, D. R. Nayak, R. Dash, and B. Majhi. 2019. An empirical evaluation of extreme learning machine: Application to handwritten character recognition. Multimedia Tools Appl. (2019), 1–29.
[100]
S. Hussain and S. Ali. 2015. Nastalique segmentation-based approach for Urdu OCR. Int. J. Doc. Anal. Recogn. 18 (2015), 357–374.
[101]
N. A. Jebril, H. R. Al-Zoubi, and Q. A. Al-Haija. 2018. Recognition of handwritten arabic characters using histograms of oriented gradient (HOG). Pattern Recogn. Image Anal. 28 (2018), 321–345.
[102]
N. H. Khan, A. Adnan, and S. Basar. 2018. Urdu ligature recognition using multi-level agglomerative hierarchical clustering. Clust. Comput. 21 (2018), 503–514.
[103]
N. Lamghari, M. Charaf, and S. Raghay. 2018. Hybrid feature vector for the recognition of arabic handwritten characters using feed-forward neural network. Arab. J. Sci. Eng. 43 (2018), 7031–7039.
[104]
S. Naz, A. I. Umar, R. Ahmed, M. I. Razzak, S. F. Rashid, and F. Shafait. 2016. Urdu Nasta'liq text recognition using implicit segmentation based on multi-dimensional long short term memory neural networks. SpringerPlus 5 (2016), 2010.
[105]
S. Naz, A. I. Umar, R. Ahmad, S. B. Ahmed, S. H. Shirazi, and M. I. Razzak. 2017. Urdu Nasta'liq text recognition system based on multi-dimensional recurrent neural network and statistical features. Neural Comput. Appl. 28 (2017), 219–231.
[106]
S. Jehangir, S. Khan, S. Khan, S. Nazir, and A. Hussain. 2021. Zernike moments based handwritten Pashto character recognition using linear discriminant analysis. Mehran Univ. Res. J. Eng. Technol. 40, 1 (2021), 152–159.
[107]
M. J. Rafeeq, Z. ur Rehman, A. Khan, I. A. Khan, and W. Jadoon. 2019. Ligature categorization based Nastaliq Urdu recognition using deep neural networks. Comput. Math. Org. Theory 25 (2019), 184–195.
[108]
I. U. Din, I. Siddiqi, S. Khalid, and T. Azam. 2017. Segmentation-free optical character recognition for printed Urdu text. EURASIP J. Image Vid. Process. 2017 (2017), 62.
[109]
S. Valikhani, F. Abdali-Mohammadi, and A. Fathi. 2019. Online continuous multi-stroke Persian/Arabic character recognition by novel spatio-temporal features for digitizer pen devices. Neural Comput. Appl. (2019), 1–20.
[110]
M. Khalifa and Y. BingRu. 2011. A novel word based arabic handwritten recognition system using SVM classifier. In Advanced Research on Electronic Commerce, Web Application, and Communication. Springer, Berlin, 163–171.
[111]
H. A. Al-Jamimi and S. A. Mahmoud. 2010. Arabic character recognition using gabor filters. In Innovations and Advances in Computer Sciences and Engineering. 113–118.
[112]
M. Rashad and N. A. Semary. 2014. Isolated printed arabic character recognition using KNN and random forest tree classifiers. In Advanced Machine Learning Technologies and Applications. Springer, Cham, 11–17.
[113]
M. Amara, K. Zidi, S. Zidi, and K. Ghedira. 2014. Arabic Character Recognition Based M-SVM: Review. Springer, Cham, 18–25.
[114]
A. Sahlol, M. A. Elfattah, C. Y. Suen, and A. E. Hassanien. 2017. Particle Swarm Optimization with Random Forests for Handwritten Arabic Recognition System. Springer, Cham, 437–446.
[115]
D. Lopresti, G. Nagy, S. Seth, and X. Zhang. 2008. Multi-character Field Recognition for Arabic and Chinese Handwriting. Springer, Berlin, 218–230.
[116]
S. T. Javed and S. Hussain. 2013. Segmentation Based Urdu Nastalique OCR. Springer, Berlin, 41–49.
[117]
M. A. Ali. 2008. Arabic Handwritten Characters Classification Using Learning Vector Quantization Algorithm. Springer, Berlin, 463–470.
[118]
A. Mezghani, F. Kallel, S. Kanoun, and M. Kherallah. 2018. Contribution on Character Modelling for Handwritten Arabic Text Recognition. Springer, Cham, 370–379.
[119]
R. Ahmed, K. Dashtipour, M. Gogate, A. Raza, R. Zhang, K. Huang, et al. 2019. Offline Arabic handwriting recognition using deep machine learning: A review of recent advances. In Proceedings of the International Conference on Brain Inspired Cognitive Systems. 457–468.
[120]
I. Ahmad, X. Wang, R. Li, M. Ahmed, and R. Ullah. 2017. Line and ligature segmentation of Urdu nastaleeq text. IEEE Access 5 (2017), 10924–10940.
[121]
N. H. Khan and A. Adnan. 2018. Urdu optical character recognition systems: Present contributions and future directions. IEEE Access 6 (2018), 46019–46046.
[122]
I. Uddin, I. Siddiqi, and S. Khalid. 2017. A holistic approach for recognition of complete urdu ligatures using hidden markov models. In Proceedings of the International Conference on Frontiers of Information Technology (FIT’17). 155–160.
[123]
J. H. AlKhateeb, F. Khelifi, J. Jiang, and S. S. Ipson. 2009. A new approach for off-line handwritten Arabic word recognition using KNN classifier. In Proceedings of the IEEE International Conference on Signal and Image Processing Applications. 191–194.
[124]
M. A. Fadeel. 2016. An efficient segmentation algorithm for arabic handwritten characters recognition system. In Proceedings of the 3rd International Conference on Mathematics and Computers in Sciences and in Industry (MCSI’16). 172–177.
[125]
R. Tlemsani and K. Belbachir. 2018. An improved arabic on-line characters recognition system. In Proceedings of the International Arab Conference on Information Technology (ACIT’18). 1–10.
[126]
A. Raza, I. Siddiqi, A. Abidi, and F. Arif. 2012. An unconstrained benchmark Urdu handwritten sentence database with automatic line segmentation. In Proceedings of the International Conference on Frontiers in Handwriting Recognition. 491–496.
[127]
M. Elleuch, N. Tagougui, and M. Kherallah. 2015. Arabic handwritten characters recognition using deep belief neural networks. In Proceedings of the IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD’15). 1–5.
[128]
R. Ahmad, M. Z. Afzal, S. F. Rashid, M. Liwicki, T. Breuel, and A. Dengel. 2016. Kpti: Katib's pashto text imagebase and deep learning benchmark. In Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition (ICFHR’16). 453–458.
[129]
Z. Ahmed, K. Iqbal, I. Mehmood, and M. A. Ayub. 2017. Ligature analysis-based Urdu OCR framework. In Proceedings of the International Conference on Frontiers of Information Technology (FIT’17). 87–92.
[130]
A. H. Metwally, M. I. Khalil, and H. M. Abbas. 2017. Offline Arabic handwriting recognition using hidden Markov models and post-recognition lexicon matching. In Proceedings of the 12th International Conference on Computer Engineering and Systems (ICCES’17). 238–243.
[131]
M. Lutf, X. You, and H. Li. 2010. Offline arabic handwriting identification using language diacritics. In Proceedings of the 20th International Conference on Pattern Recognition. 1912–1915.
[132]
A. Ul-Hasan, S. B. Ahmed, F. Rashid, F. Shafait, and T. M. Breuel. 2013. Offline printed Urdu Nastaleeq script recognition with bidirectional LSTM networks. In Proceedings of the 12th International Conference on Document Analysis and Recognition. 1061–1065.
[133]
H. Nakkach, S. Hichri, S. Haboubi, and H. Amiri. 2016. Ontology-based approach for online arabic character recognition. In Proceedings of the 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV’16). 200–205.
[134]
S. Sardar and A. Wahab. 2010. Optical character recognition system for Urdu. In Proceedings of the International Conference on Information and Emerging Technologies. 1–5.
[135]
A. J. Humaidi and T. M. Kadhim. 2017. Recognition of arabic characters using spiking neural networks. In Proceedings of the International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC’17). 7–11.
[136]
H. El Moubtahij, A. Halli, and K. Satori. 2016. Recognition of off-line Arabic handwriting words using HMM toolkit (HTK). In Proceedings of the 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV’16). 167–171.
[137]
S. A. Azeem and H. Ahmed. 2011. Recognition of segmented online Arabic handwritten characters of the ADAB database. In Proceedings of the 10th International Conference on Machine Learning and Applications and Workshops. 204–207.
[138]
M. Jain, M. Mathew, and C. Jawahar. 2017. Unconstrained ocr for urdu using deep cnn-rnn hybrid networks. In Proceedings of the 4th IAPR Asian Conference on Pattern Recognition (ACPR’17). 747–752.
[139]
W. Q. Khan and R. Q. Khan. 2015. Urdu optical character recognition technique using point feature matching; a generic approach. In Proceedings of the International Conference on Information and Communication Technologies (ICICT’15). 1–7.
[140]
K. Khan, R. U. Khan, A. Alkhalifah, and N. Ahmad. 2015. Urdu text classification using decision trees. In Proceedings of the 12th International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies (HONET’15). 1–4.
[141]
F. Bougamouza, S. Hazmoune, and M. Benmohammed. 2016. Using Mel Frequency Cepstral Coefficient method for online Arabic characters handwriting recognition. In Proceedings of the 5th International Conference on Multimedia Computing and Systems (ICMCS’16). 87–92.
[142]
A. Gimenez, I. Khoury, and A. Juan. 2010. Windowed bernoulli mixture hmms for arabic handwritten word recognition. In Proceedings of the 12th International Conference on Frontiers in Handwriting Recognition. 533–538.
[143]
A. A. Chandio, M. Pickering, and K. Shafi. 2018. Character classification and recognition for Urdu texts in natural scene images. In Proceedings of the International Conference on Computing, Mathematics and Engineering Technologies (iCoMET’18). 1–6.
[144]
G. Kaur, S. Singh, and A. Kumar. 2017. Urdu ligature recognition techniques-A review. In Proceedings of the International Conference on Intelligent Communication and Computational Techniques (ICCT’17). 285–291.
[145]
A. S. Abdalkafor. 2018. Survey for databases on arabic off-line handwritten characters recognition system. In Proceedings of the 1st International Conference on Computer Applications & Information Security (ICCAIS’18). 1–6.
[146]
A. Kacem, N. Aouïti, and A. Belaïd. 2012. Structural features extraction for handwritten Arabic personal names recognition. In Proceedings of the International Conference on Frontiers in Handwriting Recognition. 268–273.
[147]
S. Mozaffari and H. Soltanizadeh. 2009. ICDAR 2009 handwritten Farsi/Arabic character recognition competition. In Proceedings of the 10th International Conference on Document Analysis and Recognition. 1413–1417.
[148]
H. Boukerma and N. Farah. 2012. Preprocessing algorithms for Arabic handwriting recognition systems. In Proceedings of the International Conference on Advanced Computer Science Applications and Technologies (ACSAT’12). 318–323.
[149]
M. Hamdani, A. E.-D. Mousa, and H. Ney. 2013. Open vocabulary Arabic handwriting recognition using morphological decomposition. In Proceedings of the 12th International Conference on Document Analysis and Recognition. 280–284.
[150]
M. A. Abuzaraida, A. M. Zeki, and A. M. Zeki. 2013. Online recognition system for handwritten Arabic mathematical symbols. In Proceedings of the International Conference on Advanced Computer Science Applications and Technologies. 223–227.
[151]
M. O. Assayony and S. A. Mahmoud. 2017. Integration of gabor features with bag-of-features framework for arabic handwritten word recognition. In Proceedings of the 9th IEEE-GCC Conference and Exhibition (GCCCE). 1–4.
[152]
M. Eltay, A. Zidouri and I. Ahmad. 2020. Exploring deep learning approaches to recognize handwritten arabic texts. IEEE Access 8 (2020), 89882–89898. DOI:
[153]
H. Nakkach, S. Hichri, S. Haboubi, and H. Amiri. 2016. Hybrid approach to features extraction for online Arabic character recognition. In Proceedings of the 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV’16). 253–258.
[154]
S. Hassan, A. Irfan, A. Mirza, and I. Siddiqi. 2019. Cursive handwritten text recognition using bi-directional LSTMs: A case study on Urdu handwriting. In Proceedings of the International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML’19). 67–72.
[155]
D. Wilson-Nunn, T. Lyons, A. Papavasiliou, and H. Ni. 2018. A path signature approach to online arabic handwriting recognition. In Proceedings of the IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR’18). 135–139.
[156]
H. Hassen and S. Al-Maadeed. 2017. Arabic handwriting recognition using sequential minimal optimization. In Proceedings of the 1st International Workshop on Arabic Script Analysis and Recognition (ASAR’17). 79–84.
[157]
A. Alsaeedi, H. Al Mutawa, S. Snoussi, S. Natheer, K. Omri, and W. Al Subhi. 2018. Arabic words Recognition using CNN and TNN on a Smartphone. In Proceedings of the IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR’18). 57–61.
[158]
H. Akouaydi, S. Abdelhedi, S. Njah, M. Zaied, and A. M. Alimi. 2017. Decision trees based on perceptual codes for on-line Arabic character recognition. In Proceedings of the 1st International Workshop on Arabic Script Analysis and Recognition (ASAR’17). 153–157.
[159]
N. Ghanmi, A.-M. Awal, and N. Kooli. 2017. Dynamic Bayesian networks for handwritten Arabic word recognition. In Proceedings of the 1st International Workshop on Arabic Script Analysis and Recognition (ASAR’17). 104–108.
[160]
R. Alaasam, B. Kurar, M. Kassis, and J. El-Sana. 2017. Experiment study on utilizing convolutional neural networks to recognize historical Arabic handwritten text. In Proceedings of the 1st International Workshop on Arabic Script Analysis and Recognition (ASAR’17). 124–128.
[161]
R. Ahmad, M. Z. Afzal, S. F. Rashid, M. Liwicki, and A. Dengel. 2017. Text-line segmentation of large titles and headings in Arabic like script. In Proceedings of the 1st International Workshop on Arabic Script Analysis and Recognition (ASAR’17). 168–172.
[162]
A. Lawgali, M. Angelova, and A. Bouridane. 2013. HACDB: Handwritten Arabic characters database for automatic character recognition. In Proceedings of the European Workshop on Visual Information Processing (EUVIP’13). 255–259.
[163]
H. Althobaiti and C. Lu. 2017. A survey on Arabic Optical Character Recognition and an isolated handwritten Arabic Character Recognition algorithm using encoded freeman chain code. In Proceedings of the 51st Annual Conference on Information Sciences and Systems (CISS’17). 1–6.
[164]
Z. Asebriy, S. Raghay, O. Bencharef, and Y. Chihab. 2014. Comparative systems of handwriting Arabic character recognition. In Proceedings of the 2nd World Conference on Complex Systems (WCCS’14). 90–93.
[165]
A. Beg, F. Ahmed, and P. Campbell. 2010. Hybrid OCR techniques for cursive script languages-a review and applications. In Proceedings of the 2nd International Conference on Computational Intelligence, Communication Systems and Networks. 101–105.
[166]
B. M. Al-Helali and S. A. Mahmoud. 2016. A statistical framework for online Arabic character recognition. Cybernet. Syst. 47 (2016), 478–498.
[167]
R. Haraty and H. El-Zabadani. 2005. Abjad Hawwaz: An offline Arabic handwriting recognition system. Int. J. Comput. Appl. 27 (2005), 178–189.
[168]
A. Jabbar, S. Iqbal, A. Akhunzada, and Q. Abbas. 2018. An improved Urdu stemming algorithm for text mining based on multi-step hybrid approach. J. Exp. Theor. Artif. Intell. 30 (2018), 703–723.
[169]
A. K. J. Saudagar and H. Mohammad. 2018. Augmented reality mobile application for arabic text extraction, recognition and translation. J. Stat. Manage. Syst. 21 (2018), 617–629.
[170]
L. Shastri and T. Fontaine. 1995. Character recognition digit recognition pattern recognition spatiotemporal neural networks modular networks segmentation problem. Connect. Sci. 7 (1995), 211–246.
[171]
R. Ahmed, K. Dashtipour, M. Gogate, A. Raza, R. Zhang, K. Huang, ... and A. Hussain. 2020. Offline arabic handwriting recognition using deep machine learning: A review of recent advances. In International Conference on Brain Inspired Cognitive Systems. Springer, Cham. 457–468.
[172]
S. Li. 2017. Handwritten character recognition technology combined with artificial intelligence. J. Discr. Math. Sci. Cryptogr. 20 (2017), 167–178.
[173]
S. M. Awaida and S. A. Mahmoud. 2013. Writer identification of arabic text using statistical and structural features. Cybernet. Syst. 44 (2013), 57–76.
[174]
S. Naz, N. H. Khan, S. Zahoor, and M. I. Razzak. 2020. Deep OCR for Arabic script-based language like Pastho. Expert Syst. 37, 5 (2020), e12565.
[175]
S. Y. Arafat and M. J. Iqbal. 2019. Two stream deep neural network for sequence-based urdu ligature recognition. IEEE Access 7 (2019), 159090–159099.
[176]
M. Rabi, M. Amrouch, and Z. Mahani. 2018. Cursive Arabic handwriting recognition system without explicit segmentation based on hidden Markov models. J. Data Min. Digit. Human. (2018).
[177]
H. El Abed, V. Märgner, and A. Alimi. 2011. On-line Arabic handwriting recognition competition - ADAB database and participating systems. Int. J. Doc. Anal. Recogn. 14 (01/01 2011), 15–23.
[178]
F. Slimane, R. Ingold, S. Kanoun, A. M. Alimi, and J. Hennebert. 2009. A new Arabic printed text image database and evaluation protocols. 10th International Conference on Document Analysis and Recognition, Barcelona, 946--950. DOI:
[179]
M. Elzobi, A. Al-Hamadi, Z. Al Aghbari, and L. Dings. 2012. IESK-ArDB: A database for handwritten Arabic and an optimized topological segmentation approach. Doc. Anal. Recogn. 16 (10/21 2012).
[180]
N. Sabbour and F. Shafait. 2013. A segmentation-free approach to Arabic and Urdu OCR. In Document Recognition and Retrieval XX. 86580N.
[181]
A. Lawgali, M. Angelova, and A. Bouridane. 2013. HACDB: Handwritten Arabic characters database for automatic character recognition (unpublished).
[182]
R. Farrahi Moghaddam, M. Cheriet, M. M. Adankon, K. Filonenko, and R. Wisnovsky. 2010. IBN SINA: A database for research on processing and understanding of Arabic manuscripts images. In Proceedings of the 9th IAPR International Workshop on Document Analysis Systems. 11–18.

Cited By

View all
  • (2024)HumourHindiNet: Humour detection in Hindi web series using word embedding and convolutional neural networkACM Transactions on Asian and Low-Resource Language Information Processing10.1145/366130623:7(1-21)Online publication date: 26-Jun-2024
  • (2024)Assessing students’ handwritten text productionsExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.123780250:COnline publication date: 15-Sep-2024

Index Terms

  1. Analysis of Cursive Text Recognition Systems: A Systematic Literature Review

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Asian and Low-Resource Language Information Processing
    ACM Transactions on Asian and Low-Resource Language Information Processing  Volume 22, Issue 7
    July 2023
    422 pages
    ISSN:2375-4699
    EISSN:2375-4702
    DOI:10.1145/3610376
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 20 July 2023
    Online AM: 13 April 2023
    Accepted: 08 April 2023
    Revised: 03 January 2023
    Received: 13 April 2022
    Published in TALLIP Volume 22, Issue 7

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Cursive languages
    2. recognition algorithms
    3. feature techniques
    4. systematic literature review

    Qualifiers

    • Research-article

    Funding Sources

    • College of Science and Engineering
    • Hamad Bin Khalifa University
    • Qatar Foundation, Doha
    • Qatar National Library

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)165
    • Downloads (Last 6 weeks)20
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)HumourHindiNet: Humour detection in Hindi web series using word embedding and convolutional neural networkACM Transactions on Asian and Low-Resource Language Information Processing10.1145/366130623:7(1-21)Online publication date: 26-Jun-2024
    • (2024)Assessing students’ handwritten text productionsExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.123780250:COnline publication date: 15-Sep-2024

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media