Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3596711.3596798acmoverlaybooksArticle/Chapter ViewAbstractPublication PagesEdited Collectionacm-pubtype
research-article

Design and Fabrication of Materials with Desired Deformation Behavior

Published: 02 August 2023 Publication History

Editorial Notes

This paper was originally published as https://doi.org/10.1145/1778765.1778800.

Abstract

This paper introduces a data-driven process for designing and fabricating materials with desired deformation behavior. Our process starts with measuring deformation properties of base materials. For each base material we acquire a set of example deformations, and we represent the material as a non-linear stress-strain relationship in a finite-element model. We have validated our material measurement process by comparing simulations of arbitrary stacks of base materials with measured deformations of fabricated material stacks. After material measurement, our process continues with designing stacked layers of base materials. We introduce an optimization process that finds the best combination of stacked layers that meets a user's criteria specified by example deformations. Our algorithm employs a number of strategies to prune poor solutions from the combinatorial search space. We demonstrate the complete process by designing and fabricating objects with complex heterogeneous materials using modern multi-material 3D printers.

References

[1]
Barbic, J., and James, D. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3 (Aug.), 982--990. 2
[2]
Bathe, K. J. 1995. Finite Element Procedures. Prentice Hall. 3
[3]
Becker, M., and Teschner, M. 2007. Robust and efficient estimation of elasticity parameters using the linear finite element method. In SimVis, 15--28. 2
[4]
Bendsoe, M. P., and Sigmund, O. 2003. Topology Optimization. Springer Berlin. 2
[5]
Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28, 3 (July), 89:1--89:9. 2, 3, 3, 3, 4
[6]
DiLorenzo, P. C., Zordan, V. B., and Sanders, B. L. 2008. Laughing out loud: Control for modeling anatomically inspired laughter using audio. ACM Trans. Graph. 27, 5 (Dec.), 125:1--125:8. 2
[7]
Hiller, J., and Lipson, H. 2009. Design and analysis of digital materials for physical 3d voxel printing. Rapid Prototyping Journal 15, 137--149. 2
[8]
James, D. L., and Pai, D. K. 1999. Artdefo - accurate real time deformable objects. In Proc. of SIGGRAPH 99, Computer Graphics Proc., 65--72. 2
[9]
Kajberg, J., and Lindkvist, G. 2004. Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields. IJSS 41, 13, 3439--3459. 2
[10]
Kauer, M., Vuskovic, V., Dual, J., Szekely, G., and Bajka, M. 2002. Inverse finite element characterization of soft tissues. Medical Image Analysis 6, 3, 257--287. 2
[11]
Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3 (July), 51:1--51:8. 1, 2
[12]
Kicinger, R., Arciszewski, T., and Jong, K. D. 2005. Evolutionary computation and structural design: A survey of the state-of-the-art. Comput. Struct. 83, 23--24, 1943--1978. 2
[13]
Koch, R. M., Gross, M. H., Carls, F. R., von Büren, D. F., Fankhauser, G., and Parish, Y. 1996. Simulating facial surgery using finite element methods. In Proc. of SIGGRAPH 96, Computer Graphics Proc., 421--428. 2
[14]
Land, A. H., and Doig, A. G. 1960. An automatic method of solving discrete programming problems. Econometrica 28, 3, 497--520. 5.2
[15]
Lang, J., Pai, D. K., and Woodham, R. J. 2002. Acquisition of elastic models for interactive simulation. IJRR 21, 8, 713--733. 2
[16]
Lee, S.-H., and Terzopoulos, D. 2006. Heads up!: biome-chanical modeling and neuromuscular control of the neck. ACM Trans. Graph 25, 3 (July), 1188--1198. 2
[17]
Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4 (Aug.), 99:1--99:17. 2
[18]
Lund, E., and Stegmann, J. 2005. On structural optimization of composite shell structures using a discrete constitutive parameterization. Wind Energy 8, 109--124. 5.2
[19]
Magnenat-Thalmann, N., Kalra, P., Lévêque, J. L., Bazin, R., Batisse, D., and Queleux, B. 2002. A computational skin model: fold and wrinkle formation. IEEE Trans. on Information Technology in Biomedicine 6, 4, 317--323. 2
[20]
Mikolajczyk, K., and Schmid, C. 2004. Scale & affine invariant interest point detectors. IJCV 60, 1, 63--86. 6
[21]
Mitani, J., and Suzuki, H. 2004. Making papercraft toys from meshes using strip-based approximate unfolding. ACM Trans. Graph. 23, 3 (Aug.), 259--263. 1
[22]
Mori, Y., and Igarashi, T. 2007. Plushie: An interactive design system for plush toys. ACM Trans. Graph. 26, 3 (July), 45:1--45:8. 1
[23]
Müller, M., and Gross, M. H. 2004. Interactive virtual materials. In Graphics Interface 2004, 239--246. 3
[24]
Nealen, A., Mller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4 (Dec.), 809--836. 2
[25]
Nesme, M., Kry, P. G., Je?ábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3 (July), 52:1--52:9. 2
[26]
Neumaier, A., and Pownuk, A. 2007. Linear systems with large uncertainties with applications to truss structures. Reliable Computing 13, 149--172. 5.2
[27]
OBJET. Connex500 Multi-Material 3D Printing System. http://www.objet.com/3D-Printer/Connex500/.1
[28]
O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proc. of SIGGRAPH 99, Computer Graphics Proc., 137--146. 2
[29]
Ogden, R. W. 1997. Non-Linear Elastic Deformations. Courier Dover Publications. 2
[30]
Okabe, H., Imaoka, H., Tomiha, T., and Niwaya, H. 1992. Three dimensional apparel cad system. In Computer Graphics (Proc. of SIGGRAPH 92), 105--110. 1
[31]
Pai, D. K., van den Doel, K., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3d objects. In Proc. of ACM SIGGRAPH 2001, Computer Graphics Proc., 87--96. 2
[32]
Rebonato, R., and Jäckel, P. 1999. The most general methodology to create a valid correlation matrix for risk management and option pricing purposes. Tech. rep., Quantitative Research Centre, NatWest Group. 4
[33]
Schnur, D. S., and Zabaras, N. 1992. An inverse method for determining elastic material properties and a material interface. International Journal for Numerical Methods in Engineering 33, 10, 2039--2057. 2
[34]
Schoner, J. L., Lang, J., and Seidel, H.-P. 2004. Measurement-based interactive simulation of viscoelastic solids. Computer Graphics Forum 23, 3 (Sept.), 547--556. 2
[35]
Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph 24, 3 (Aug.), 417--425. 2
[36]
Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Trans. Graph. 27, 3 (Aug.), 83:1--83:8. 2
[37]
Svoboda, T., Martinec, D., and Pajdla, T. 2005. A convenient multi-camera self-calibration for virtual environments. PRESENCE: Teleoperators and Virtual Environments 14, 4 (August), 407--422. 6
[38]
Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE TVCG 11, 3 (May/June), 317--328. 2
[39]
Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Computer Graphics (Proc. of SIGGRAPH 87), 205--214. 2
[40]
Terzopoulus, D., and Waters, K. 1993. Analysis and synthesis of facial image sequences using physical and anatomical models. IEEE Trans. on PAMI 14, 569--579. 2
[41]
Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3 (Aug.). 1
[42]
Zohdi, T. I., and Wriggers, P. 2004. Introduction to Computational Micromechanics. Springer-Verlag New York, Inc. 1
[43]
Zordan, V. B., Celly, B., Chiu, B., and DiLorenzo, P. C. 2004. Breathe easy: model and control of simulated respiration for animation. In 2004 ACM SIGGRAPH / Eurographics SCA, 29--37. 2

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Overlay Books
Seminal Graphics Papers: Pushing the Boundaries, Volume 2
August 2023
893 pages
ISBN:9798400708978
DOI:10.1145/3596711
  • Editor:
  • Mary C. Whitton
  • cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 29, Issue 4
    July 2010
    942 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/1778765
    Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 August 2023

Permissions

Request permissions for this article.

Badges

  • Seminal Paper

Author Tags

  1. deformable objects
  2. fabrication
  3. goal-based material design

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)548
  • Downloads (Last 6 weeks)60
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media