Cited By
View all- Jiang S(2024)Food Computing for Nutrition and Health2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW)10.1109/ICDEW61823.2024.00066(29-31)Online publication date: 13-May-2024
Methods | ETH Food-101 | Vireo Food-172 | ISIA Food-500 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R@1 | R@2 | R@4 | NMI | R@1 | R@2 | R@4 | NMI | R@1 | R@2 | R@4 | NMI | ||
ImageNet [12](Pre-train) | 60.35 | 72.02 | 81.52 | 44.10 | 68.71 | 77.00 | 83.91 | 44.82 | 49.86 | 60.05 | 69.50 | 40.13 | |
Pair-based | Contrastive [43] | 71.43 | 80.96 | 87.79 | 54.20 | 82.20 | 87.97 | 92.07 | 63.52 | 63.25 | 72.81 | 80.58 | 53.57 |
Triplet [1] | 71.75 | 81.19 | 87.83 | 54.89 | 82.50 | 88.21 | 92.30 | 64.34 | 62.97 | 72.55 | 80.34 | 53.52 | |
N-Pair [44] | 65.48 | 75.93 | 83.82 | 46.34 | 73.02 | 80.37 | 86.04 | 49.53 | 47.86 | 58.35 | 67.97 | 40.24 | |
Hist. [49] | 72.78 | 82.01 | 88.38 | 52.83 | 80.78 | 86.92 | 91.29 | 62.04 | 61.00 | 71.06 | 79.26 | 52.51 | |
Margin [28] | 73.06 | 82.13 | 88.75 | 56.44 | 82.85 | 88.30 | 92.23 | 65.35 | 64.62 | 73.90 | 81.37 | 54.97 | |
Lifted [18] | 64.46 | 75.33 | 83.48 | 45.27 | 71.92 | 79.26 | 85.28 | 47.76 | 45.24 | 55.72 | 65.64 | 38.32 | |
Circle [46] | 61.11 | 73.56 | 83.24 | 47.11 | 73.53 | 81.49 | 88.10 | 58.72 | 49.13 | 59.21 | 68.70 | 39.81 | |
Proxy-based | Softmax [61] | 73.14 | 82.58 | 88.87 | 57.45 | 82.01 | 87.77 | 91.95 | 64.88 | 67.16 | 76.40 | 83.53 | 59.17 |
ProxyNCA [35] | 69.99 | 79.65 | 86.61 | 53.49 | 79.85 | 85.89 | 90.63 | 60.56 | 66.36 | 75.76 | 82.96 | 57.93 | |
SoftTriple [38] | 63.89 | 74.76 | 82.78 | 44.80 | 73.99 | 81.28 | 87.00 | 51.29 | 51.64 | 61.51 | 70.46 | 40.76 | |
Proxy Synthesis [16] | 70.72 | 80.69 | 87.80 | 55.05 | 81.17 | 86.66 | 90.76 | 63.32 | 66.98 | 76.32 | 83.42 | 58.90 | |
AP-based | Smooth-AP [5] | 71.55 | 80.74 | 87.51 | 53.95 | 81.95 | 87.84 | 91.75 | 64.11 | 64.22 | 73.66 | 81.08 | 55.60 |
PNP [26] | 71.51 | 80.61 | 87.30 | 53.52 | 82.05 | 87.54 | 91.61 | 64.13 | 63.61 | 73.07 | 80.60 | 54.63 | |
Ours (Margin+\(\rho\) Sampling) | 73.52 | 82.56 | 88.98 | 57.57 | 82.94 | 88.38 | 92.31 | 65.88 | 64.67 | 74.13 | 81.65 | 57.25 | |
Ours (Margin+\(\rho\) Sampling+GAO) | 74.10 | 83.20 | 89.28 | 58.58 | 83.13 | 88.49 | 92.32 | 66.21 | 69.70 | 78.77 | 85.35 | 61.71 |
Methods | ETH Food-101 | Vireo Food-172 | ISIA Food-500 | ||||
---|---|---|---|---|---|---|---|
MAP@1K | MAP@C | MAP@1K | MAP@C | MAP@1K | MAP@C | ||
ImageNet(Pre-train) | 15.12 | 15.12 | 13.14 | 12.08 | 5.24 | 5.27 | |
Pair-based | Contrastive [43] | 22.53 | 22.53 | 31.04 | 28.49 | 12.79 | 12.82 |
Triplet [1] | 22.92 | 22.92 | 31.45 | 28.87 | 12.56 | 12.58 | |
N-Pair [44] | 19.31 | 19.31 | 19.41 | 17.83 | 5.63 | 5.66 | |
Hist. [49] | 23.17 | 23.17 | 30.59 | 27.96 | 12.21 | 12.23 | |
Margin [28] | 23.38 | 23.38 | 31.79 | 29.17 | 12.79 | 12.82 | |
Lifted [18] | 18.41 | 18.41 | 18.09 | 16.62 | 4.78 | 4.80 | |
Circle [46] | 15.04 | 15.04 | 22.35 | 20.86 | 4.11 | 4.09 | |
Proxy-based | Softmax [61] | 23.88 | 23.88 | 30.89 | 28.01 | 15.35 | 15.37 |
ProxyNCA [35] | 21.65 | 21.65 | 30.13 | 27.57 | 15.89 | 15.92 | |
SoftTriple [38] | 18.11 | 18.11 | 18.65 | 17.03 | 5.97 | 5.98 | |
Proxy Synthesis [16] | 22.03 | 22.03 | 26.99 | 24.52 | 16.52 | 16.56 | |
AP-based | Smooth-AP [5] | 23.24 | 23.24 | 31.78 | 29.11 | 14.67 | 14.72 |
PNP [26] | 23.20 | 23.20 | 31.51 | 28.92 | 14.87 | 14.91 | |
Ours (Margin+\(\rho\) Sampling) | 23.50 | 23.50 | 31.66 | 29.09 | 14.52 | 14.53 | |
Ours (Margin+\(\rho\) Sampling+GAO) | 24.96 | 24.96 | 32.32 | 29.63 | 17.59 | 17.68 |
Methods | ETH Food-101 | Vireo Food-172 | ISIA Food-500 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R@1 | R@2 | R@4 | MAP | NMI | R@1 | R@2 | R@4 | MAP | NMI | R@1 | R@2 | R@4 | MAP | NMI | ||
Contrastive | Random [20] | 63.37 | 74.40 | 83.40 | 17.95 | 45.24 | 73.13 | 80.67 | 86.82 | 20.39 | 49.52 | 40.56 | 50.65 | 60.69 | 3.80 | 35.97 |
Softhard [39] | 68.67 | 78.98 | 86.37 | 21.07 | 50.33 | 82.07 | 87.69 | 91.81 | 31.40 | 63.61 | 60.23 | 70.17 | 78.42 | 11.58 | 51.19 | |
Distance [56] | 71.43 | 80.96 | 87.79 | 22.53 | 54.20 | 82.20 | 87.97 | 92.07 | 31.45 | 63.52 | 63.25 | 72.81 | 80.58 | 12.79 | 53.57 | |
\(\rho\) Sampling | 72.69 | 81.85 | 88.67 | 23.31 | 57.46 | 82.73 | 88.35 | 92.29 | 31.62 | 65.69 | 64.60 | 74.02 | 81.59 | 13.22 | 57.11 | |
Margin | Random [20] | 67.30 | 77.59 | 85.39 | 20.56 | 49.32 | 78.38 | 84.76 | 89.50 | 26.87 | 57.96 | 58.21 | 68.43 | 77.14 | 10.97 | 50.51 |
Softhard [39] | 73.13 | 82.18 | 88.55 | 23.35 | 55.82 | 82.58 | 88.28 | 92.26 | 31.46 | 64.46 | 65.48 | 74.94 | 82.24 | 14.04 | 56.31 | |
Distance [56] | 73.06 | 82.13 | 88.75 | 23.38 | 56.44 | 82.85 | 88.30 | 92.23 | 31.79 | 65.35 | 64.62 | 73.90 | 81.37 | 12.79 | 54.97 | |
\(\rho\) Sampling | 73.52 | 82.56 | 88.98 | 23.50 | 57.57 | 82.94 | 88.38 | 92.31 | 31.66 | 65.88 | 64.67 | 74.13 | 81.65 | 14.52 | 57.25 |
Method | ETH Food-101\(\rightarrow\)Vireo Food-172 | Vireo Food-172\(\rightarrow\)ETH Food-101 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
R@1 | R@2 | R@4 | MAP | NMI | R@1 | R@2 | R@4 | MAP | NMI | |
Contrastive [43] | 75.06 | 82.34 | 87.94 | 17.64 | 51.32 | 70.45 | 80.36 | 87.54 | 20.81 | 52.74 |
Softmax [61] | 75.09 | 82.40 | 87.96 | 19.64 | 53.53 | 70.21 | 79.69 | 86.45 | 19.92 | 53.68 |
Smooth-AP [5] | 74.81 | 81.51 | 87.24 | 19.69 | 51.30 | 70.27 | 79.73 | 86.50 | 22.21 | 52.44 |
Circle [46] | 63.77 | 73.00 | 80.78 | 10.35 | 42.15 | 57.45 | 68.53 | 76.35 | 13.83 | 43.76 |
Proxy Synthesis [16] | 73.01 | 80.71 | 86.89 | 16.79 | 50.10 | 64.52 | 75.27 | 83.43 | 17.07 | 46.78 |
PNP [26] | 75.87 | 83.21 | 88.20 | 19.90 | 53.86 | 70.33 | 79.68 | 86.32 | 22.41 | 52.10 |
Ours | 76.98 | 83.86 | 88.85 | 21.41 | 55.49 | 72.36 | 82.01 | 88.34 | 23.19 | 56.23 |
Food detection is becoming a fundamental task in food computing that supports various multimedia applications, including food recommendation and dietary monitoring. To deal with real-world scenarios, food detection needs to localize and recognize novel ...
Food is essential for human life and it is fundamental to the human experience. Food-related study may support multifarious applications and services, such as guiding human behavior, improving human health, and understanding the culinary culture. With ...
Food image segmentation is a critical and indispensible task for developing health-related applications such as estimating food calories and nutrients. Existing food image segmentation models are underperforming due to two reasons: (1) there is a lack ...
Association for Computing Machinery
New York, NY, United States
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in