Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Constructive Heuristic for the Uniform Capacitated Vertex k-center Problem

Published: 11 August 2023 Publication History

Abstract

The uniform capacitated vertex k-center problem is an 𝒩𝒫-hard combinatorial optimization problem that models real situations where k centers can only attend a maximum number of customers, and the travel time or distance from the customers to their assigned center has to be minimized. This article introduces a polynomial-time constructive heuristic algorithm that exploits the relationship between this problem and the minimum capacitated dominating set problem. The proposed heuristic is based on the one-hop farthest-first heuristic that has proven effective for the uncapacitated version of the problem. We carried out different empirical evaluations of the proposed heuristic, including an analysis of the effect of a parallel implementation of the algorithm, which significantly improved the running time for relatively large instances.

References

[1]
Abdulrahman Al-Khedhairi and Said Salhi. 2005. Enhancements to two exact algorithms for solving the vertex \({P}\)-center problem. J. Math. Model. Algor. 4, 2 (2005), 129–147.
[2]
Maria Albareda-Sambola, Juan A. Díaz, and Elena Fernández. 2010. Lagrangean duals and exact solution to the capacitated \(p\)-center problem. Eur. J. Operat. Res. 201, 1 (2010), 71–81.
[3]
Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli Gupta, Vivek Madan, and Ola Svensson. 2015. Centrality of trees for capacitated \(k\)-center. Math. Program. 154, 1-2 (2015), 29–53.
[4]
Judit Barilan, Guy Kortsarz, and David Peleg. 1993. How to allocate network centers. J. Algor. 15, 3 (1993), 385–415.
[5]
John E. Beasley. 1990. OR-library: Distributing test problems by electronic mail. J. Operat. Res. Soc. 41, 11 (1990), 1069–1072.
[6]
Hatice Çalık, Martine Labbé, and Hande Yaman. 2019. \(p\)-Center problems. In Location Science (2nd ed.), G. Laporte, S. Nickel, and F. Saldanha da Gama (Eds.). Springer, Cham, Chapter 3, 51–65.
[7]
Hatice Calik and Barbaros C. Tansel. 2013. Double bound method for solving the \(p\)-center location problem. Comput. Operat. Res. 40, 12 (2013), 2991–2999.
[8]
Doron Chen and Reuven Chen. 2009. New relaxation-based algorithms for the optimal solution of the continuous and discrete \(p\)-center problems. Comput. Operat. Res. 36, 5 (2009), 1646–1655.
[9]
Claudio Contardo, Manuel Iori, and Raphael Kramer. 2019. A scalable exact algorithm for the vertex \(p\)-center problem. Comput. Operat. Res. 103 (2019), 211–220.
[10]
José Alejandro Cornejo Acosta, Jesús García Díaz, Ricardo Menchaca-Méndez, and Rolando Menchaca-Méndez. 2020. Solving the capacitated vertex k-center problem through the minimum capacitated dominating set problem. Mathematics 8, 9 (2020), 1551.
[11]
Mark S. Daskin. 2000. A new approach to solving the vertex \(p\)-center problem to optimality: Algorithm and computational results. Commun. Operat. Res. Soc. Japan 45, 9 (2000), 428–436.
[12]
Mark S. Daskin. 2011. Network and Discrete Location: Models, Algorithms, and Applications. Wiley, New York.
[13]
Martin E. Dyer and Alan M. Frieze. 1985. A simple heuristic for the \(p\)-centre problem. Operat. Res. Lett. 3, 6 (1985), 285–288.
[14]
Sourour Elloumi, Martine Labbé, and Yves Pochet. 2004. A new formulation and resolution method for the \(p\)-center problem. INFORMS J. Comput. 16, 1 (2004), 84–94.
[15]
Erhan Erkut. 1990. The discrete \(p\)-dispersion problem. European Journal of Operational Research 46, 1 (1990), 48–60.
[16]
Michael J. Flynn. 1972. Some computer organizations and their effectiveness. IEEE Trans. Comput. C–21, 9 (1972), 948–960.
[17]
Jesus Garcia-Diaz, Rolando Menchaca-Mendez, Ricardo Menchaca-Mendez, Saúl Pomares Hernández, Julio César Pérez-Sansalvador, and Noureddine Lakouari. 2019. Approximation algorithms for the vertex k-Center problem: Survey and experimental evaluation. IEEE Access 7 (2019), 109228–109245.
[18]
Jesus Garcia-Diaz, Jairo Sanchez-Hernandez, Ricardo Menchaca-Mendez, and Rolando Menchaca-Mendez. 2017. When a worse approximation factor gives better performance: A 3-approximation algorithm for the vertex k-center problem. J. Heurist. 23, 5 (2017), 349–366.
[19]
Jesús García Diaz, Ricardo Menchaca Méndez, Jairo Sánchez Hernandez, and Rolando Menchaca Méndez. 2018. Local search algorithms for the vertex k-center problem. IEEE Latin Amer. Trans. 16, 6 (2018), 1765–1771.
[20]
Teofilo F. Gonzalez. 1985. Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38 (1985), 293–306.
[21]
Dorit S. Hochbaum and David B. Shmoys. 1985. A best possible heuristic for the \(k\)-center problem. Math. Operat. Res. 10, 2 (1985), 180–184.
[22]
T. Ilhan, F. Ozsoy, and M. Pınar. 2002. An Efficient Exact Algorithm for the Vertex \(p\)-center Problem and Computational Experiments for Different Set Covering Subproblems. Technical Report. Bilkent University, Department of Industrial Engineering, Ankara, Turkey.
[23]
Samir Khuller and Yoram J. Sussmann. 2000. The capacitated \({K}\)-center problem. SIAM J. Discrete Math. 13, 3 (2000), 403–418.
[24]
Raphael Kramer, Manuel Iori, and Thibaut Vidal. 2020. Mathematical models and search algorithms for the capacitated \(p\)-center problem. INFORMS J. Comput. 32, 2 (2020), 444–460.
[25]
Jurij Mihelič and Borut Robič. 2003. Approximation algorithms for the k-center problem: An experimental evaluation. In Operations Research Proceedings 2002, Ulrike Leopold-Wildburger, Franz Rendl, and Gerhard Wäscher (Eds.). Springer Berlin Heidelberg, Berlin, 371–376.
[26]
Edward Minieka. 1970. The \(m\)-center problem. SIAM Rev. 12, 1 (1970), 138–139.
[27]
Nenad Mladenović, Martine Labbé, and Pierre Hansen. 2003. Solving the \(p\)-center problem with tabu search and variable neighborhood search. Networks 42, 1 (2003), 48–64.
[28]
F. Aykut Özsoy and Mustafa Ç. Pınar. 2006. An exact algorithm for the capacitated vertex \(p\)-center problem. Comput. Operat. Res. 33, 5 (2006), 1420–1436.
[29]
Ján Plesník. 1987. A heuristic for the \(p\)-center problems in graphs. Discrete Applied Mathematics 17, 3 (1987), 263–268.
[30]
D. R. Quevedo-Orozco and R. Z. Ríos-Mercado. 2013. A new heuristic for the capacitated vertex \(p\)-center problem. In Advances in Artificial Intelligence, C. Bielza, A. Salmerón, A. Alonso-Betanzos, J. I. Hidalgo, L. Martínez, A. Troncoso, E. Corchado, and J. M. Corchado (Eds.). Lecture Notes in Artificial Intelligence, Vol. 8109. Springer, Heidelberg, 279–288.
[31]
Dagoberto R. Quevedo-Orozco and Roger Z. Ríos-Mercado. 2015. Improving the quality of heuristic solutions for the capacitated vertex \(p\)-center problem through iterated greedy local search with variable neighborhood descent. Comput. Operat. Res. 62 (2015), 133–144.
[32]
Rattan Rana and Deepak Garg. 2008. The analytical study of \(k\)-center problem solving techniques. Int. J. Info. Technol. Knowl. Manage. 1, 2 (2008), 527–535.
[33]
Gerhard Reinelt. 1991. TSPLIB—A traveling salesman problem library. ORSA J. Comput. 3, 4 (1991), 376–384.
[34]
Mauricio G. C. Resende and Celso C. Ribeiro. 2016. Optimization by GRASP: Greedy Randomized Adaptive Search Procedures. Springer, New York.
[35]
Borut Robič and Jurij Mihelič. 2005. Solving the \(k\)-center problem efficiently with a dominating set algorithm. J. Comput. Info. Technol. 13, 3 (2005), 225–234.
[36]
Maria Paola Scaparra, Stefano Pallottino, and Maria Grazia Scutellà. 2004. Large-scale local search heuristics for the capacitated vertex \(p\)-center problem. Networks 43, 4 (2004), 241–255.
[37]
David B. Shmoys. 1995. Computing near-optimal solutions to combinatorial optimization problems. Combinat. Optimiz. 20 (1995), 355–397.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Journal of Experimental Algorithmics
ACM Journal of Experimental Algorithmics  Volume 28, Issue
December 2023
325 pages
ISSN:1084-6654
EISSN:1084-6654
DOI:10.1145/3587923
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 August 2023
Online AM: 22 June 2023
Accepted: 16 May 2023
Revised: 06 April 2023
Received: 03 February 2022
Published in JEA Volume 28

Badges

Author Tags

  1. Combinatorial optimization
  2. heuristic search
  3. capacitated k-center
  4. parallel algorithm

Qualifiers

  • Research-article

Funding Sources

  • UANL through its Scientific and Technological Research Support Program
  • CONACYT

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 185
    Total Downloads
  • Downloads (Last 12 months)78
  • Downloads (Last 6 weeks)7
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media