Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3623053.3623365acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Geometry Processing with Neural Fields

Published: 28 November 2023 Publication History
First page of PDF

References

[1]
Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt, and Joan M Ogden. 1984. Pyramid methods in image processing. RCA engineer 29, 6 (1984), 33–41.
[2]
Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Desbrun. 2003. Anisotropic polygonal remeshing. ACM SIGGRAPH 2003 Papers (2003).
[3]
Pierre Alliez, Mark Meyer, and Mathieu Desbrun. 2002. Interactive geometry remeshing. ACM Transactions on Graphics (TOG) 21, 3 (2002), 347–354.
[4]
Matan Atzmon and Yaron Lipman. 2020. SAL: Sign agnostic learning of shapes from raw data. In Proc. CVPR.
[5]
Jens Behrmann, D. Duvenaud, and J. Jacobsen. 2019. Invertible Residual Networks. In ICML.
[6]
J. Bloomenthal and B. Wyvill. 1997. Introduction to Implicit Surfaces.
[7]
Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon mesh processing. CRC press.
[8]
Peter J Burt and Edward H Adelson. 1987. The Laplacian pyramid as a compact image code. In Readings in computer vision. Elsevier, 671–679.
[9]
Edwin Catmull. 1972. A system for computer generated movies. In Proceedings of the ACM annual conference-Volume 1. 422–431.
[10]
Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018. Neural ordinary differential equations. In NeurIPS.
[11]
Yinbo Chen, Sifei Liu, and Xiaolong Wang. 2021. Learning continuous image representation with local implicit image function. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8628–8638.
[12]
Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5939–5948.
[13]
Grigorios Chrysos, Stylianos Moschoglou, Yannis Panagakis, and Stefanos Zafeiriou. 2019. PolyGAN: High-Order Polynomial Generators. arXiv preprint arXiv:1908.06571 (2019).
[14]
B. Curless and M. Levoy. 1996. A volumetric method for building complex models from range images. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996).
[15]
T. Davies, Derek Nowrouzezahrai, and A. Jacobson. 2020. On the Effectiveness of Weight-Encoded Neural Implicit 3D Shapes.
[16]
Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. 2021. Coin: Compression with implicit neural representations. arXiv preprint arXiv:2103.03123 (2021).
[17]
S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S. Morcos, Marta Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo Danihelka, Karol Gregor, 2018. Neural scene representation and rendering. Science 360, 6394 (2018), 1204–1210.
[18]
Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J. Zico Kolter. 2021. Multiplicative Filter Networks. In ICLR.
[19]
Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. 2019. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. In ICLR.
[20]
Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and Thomas Funkhouser. 2020. Local implicit grid representations for 3D scenes, In Proc. CVPR. arXiv preprint arXiv:2003.08981.
[21]
M. W. Jones, J. A. Bærentzen, and M. Srámek. 2006. 3D distance fields: a survey of techniques and applications. IEEE Transactions on Visualization and Computer Graphics 12 (2006), 581–599.
[22]
Diederik P Kingma and Max Welling. 2014. Auto-encoding variational bayes. In ICLR.
[23]
David B. Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. 2022. BACON: Band-limited Coordinate Networks for Multiscale Scene Representation. CVPR (2022).
[24]
Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural Scene Representation. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 58 (2021), 13 pages.
[25]
Lars M. Mescheder, Michael Oechsle, M. Niemeyer, S. Nowozin, and Andreas Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), 4455–4465.
[26]
Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Baktashmotlagh, and Anders Eriksson. 2019. Deep level sets: Implicit surface representations for 3d shape inference. arXiv preprint arXiv:1901.06802 (2019).
[27]
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In Proc. ECCV.
[28]
Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-Time Neural Radiance Caching for Path Tracing. ACM Trans. Graph. 40, 4 (Aug. 2021).
[29]
K. Museth, D. Breen, R. Whitaker, and A. Barr. 2002. Level set surface editing operators. Proceedings of the 29th annual conference on Computer graphics and interactive techniques (2002).
[30]
Martin E Newell. 1975. The utilization of procedure models in digital image synthesis. Technical Report. UTAH UNIV SALT LAKE CITY SCHOOL OF COMPUTING.
[31]
Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. 2020. Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. In Proc. CVPR.
[32]
Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. 2019. Texture Fields: Learning Texture Representations in Function Space. In Proc. ICCV.
[33]
S. Osher and Ronald Fedkiw. 2003. Level set methods and dynamic implicit surfaces. In Applied mathematical sciences.
[34]
Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019a. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, In Proc. CVPR. Proc. CVPR.
[35]
Jeong Joon Park, Peter R. Florence, J. Straub, Richard A. Newcombe, and S. Lovegrove. 2019b. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), 165–174.
[36]
Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. 2020. Convolutional occupancy networks, In Proc. ECCV. arXiv preprint arXiv:2003.04618.
[37]
Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378 (2019), 686–707.
[38]
Danilo Jimenez Rezende and Shakir Mohamed. 2015. Variational Inference with Normalizing Flows. In ICML.
[39]
A. Rosenfeld and J. Pfaltz. 1966. Sequential Operations in Digital Picture Processing. J. ACM 13 (1966), 471–494.
[40]
S. Saito, Zeng Huang, R. Natsume, S. Morishima, Angjoo Kanazawa, and Hao Li. 2019. PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019), 2304–2314.
[41]
Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan, Richard G Baraniuk, and Ashok Veeraraghavan. 2022. MINER: Multiscale Implicit Neural Representations. arXiv preprint arXiv:2202.03532 (2022).
[42]
Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing. ACM Trans. Graph. 39, 4 (Aug. 2020).
[43]
Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions. (Feb. 2023). arxiv:2302.11815 [cs.GR]
[44]
Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-Free Monte Carlo for PDEs with Spatially Varying Coefficients. (Jan. 2022). arxiv:2201.13240 [cs.GR]
[45]
Eero P Simoncelli and William T Freeman. 1995. The steerable pyramid: A flexible architecture for multi-scale derivative computation. In Proceedings., International Conference on Image Processing, Vol. 3. IEEE, 444–447.
[46]
Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. 2020a. Implicit Neural Representations with Periodic Activation Functions. In Proc. NeurIPS.
[47]
V. Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and G. Wetzstein. 2020b. Implicit Neural Representations with Periodic Activation Functions. ArXiv abs/2006.09661 (2020).
[48]
Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. 2019. Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations. In Proc. NeurIPS.
[49]
O. Sorkine-Hornung and M. Alexa. 2007. As-rigid-as-possible surface modeling. In Symposium on Geometry Processing.
[50]
Towaki Takikawa, Joey Litalien, K. Yin, K. Kreis, Charles T. Loop, Derek Nowrouzezahrai, A. Jacobson, M. McGuire, and S. Fidler. 2021. Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. ArXiv abs/2101.10994 (2021).
[51]
Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. 2020a. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. In Proc. NeurIPS.
[52]
Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, R. Ramamoorthi, J. T. Barron, and Ren Ng. 2020b. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. ArXiv abs/2006.10739 (2020).
[53]
G. Taubin. 1995. A signal processing approach to fair surface design. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques (1995).
[54]
Jason Torchinsky. 2013. The First Real Object Ever 3D Scanned And Rendered Was A VW Beetle. Jalopnik (2013). https://jalopnik.com/the-first-real-object-ever-3d-scanned-and-rendered-was-494241353.
[55]
Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022. Neural fields in visual computing and beyond. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 641–676.
[56]
Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Ronen Basri, and Yaron Lipman. 2020. Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance. In Proc. NeurIPS.

Cited By

View all
  • (2024)A generic and flexible regularization framework for NeRFs2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)10.1109/WACV57701.2024.00306(3076-3085)Online publication date: 3-Jan-2024
  • (2024)FuncGrasp: Learning Object-Centric Neural Grasp Functions from Single Annotated Example Object2024 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA57147.2024.10611233(1900-1906)Online publication date: 13-May-2024
  • (2024)FFnsr: Fast and Fine Neural Surface Reconstruction2024 IEEE International Conference on Multimedia and Expo (ICME)10.1109/ICME57554.2024.10687637(1-6)Online publication date: 15-Jul-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SA '23: SIGGRAPH Asia 2023 Doctoral Consortium
November 2023
50 pages
ISBN:9798400703928
DOI:10.1145/3623053
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 November 2023

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Deep Learning
  2. Generative Model
  3. Geometry Processing
  4. Machine Learning
  5. Neural Fields

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SA '23
Sponsor:
SA '23: SIGGRAPH Asia 2023
December 12 - 15, 2023
NSW, Sydney, Australia

Acceptance Rates

Overall Acceptance Rate 178 of 869 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)66
  • Downloads (Last 6 weeks)3
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A generic and flexible regularization framework for NeRFs2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)10.1109/WACV57701.2024.00306(3076-3085)Online publication date: 3-Jan-2024
  • (2024)FuncGrasp: Learning Object-Centric Neural Grasp Functions from Single Annotated Example Object2024 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA57147.2024.10611233(1900-1906)Online publication date: 13-May-2024
  • (2024)FFnsr: Fast and Fine Neural Surface Reconstruction2024 IEEE International Conference on Multimedia and Expo (ICME)10.1109/ICME57554.2024.10687637(1-6)Online publication date: 15-Jul-2024
  • (2024)TutteNet: Injective 3D Deformations by Composition of 2D Mesh Deformations2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.02020(21378-21389)Online publication date: 16-Jun-2024
  • (2024)Self-Supervised Dual Contouring2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00448(4681-4691)Online publication date: 16-Jun-2024
  • (2024)PoNQ: A Neural QEM-Based Mesh Representation2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00350(3647-3657)Online publication date: 16-Jun-2024
  • (2023)Spacetime Surface Regularization for Neural Dynamic Scene Reconstruction2023 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV51070.2023.01638(17825-17835)Online publication date: 1-Oct-2023
  • (2023)Leveraging Intrinsic Properties for Non-Rigid Garment Alignment2023 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV51070.2023.01332(14439-14450)Online publication date: 1-Oct-2023
  • (2023)Neural Implicit Surface Evolution2023 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV51070.2023.01313(14233-14243)Online publication date: 1-Oct-2023
  • (2023)Neural Lens Modeling2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52729.2023.00815(8435-8445)Online publication date: Jun-2023

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media