Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3626246.3654694acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
tutorial
Open access

SIMDified Data Processing - Foundations, Abstraction, and Advanced Techniques

Published: 09 June 2024 Publication History

Abstract

Query execution techniques in database systems are constantly adapting to novel hardware features in order to improve query performance, in particular for analytical queries. In the last decade, the Single Instruction Multiple Data (SIMD) paradigm was established as a state-of-the-art approach to increase the single-query performance by parallelizing in-core. Such SIMD capabilities are constantly increasing in modern processors by more comprehensive SIMD instruction set extensions. Therefore, this tutorial will provide an up-to-date overview about SIMDified query processing concepts. Conceptually, this tutorial is divided into three parts. In the first part, we lay the foundations by describing what SIMD is, what it was introduced for, and how it is traditionally used to accelerate query processing. The subsequent two parts focus on novel developments in this area. While the second part of this tutorial is dedicated to an abstraction layer to handle the increasing heterogeneity in the SIMD hardware landscape, the third part provides a survey of advanced techniques to address upcoming challenges such as wider and flexibly-sized SIMD registers.

References

[1]
Daniel Abadi, Rakesh Agrawal, Anastasia Ailamaki, Magdalena Balazinska, Philip A. Bernstein, Michael J. Carey, Surajit Chaudhuri, Jeffrey Dean, AnHai Doan, Michael J. Franklin, Johannes Gehrke, Laura M. Haas, Alon Y. Halevy, Joseph M. Hellerstein, Yannis E. Ioannidis, H. V. Jagadish, Donald Kossmann, Samuel Madden, Sharad Mehrotra, Tova Milo, Jeffrey F. Naughton, Raghu Ramakrishnan, Volker Markl, Christopher Olston, Beng Chin Ooi, Christopher Ré, Dan Suciu, Michael Stonebraker, Todd Walter, and Jennifer Widom. 2016. The Beckman report on database research. Commun. ACM, Vol. 59, 2 (2016), 92--99. https://doi.org/10.1145/2845915
[2]
Anastasia Ailamaki, Erietta Liarou, Pinar Tö zü n, Danica Porobic, and Iraklis Psaroudakis. 2014. How to stop under-utilization and love multicores. In International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22--27, 2014. ACM, 189--192. https://doi.org/10.1145/2588555.2588892
[3]
ARM. 2024 a. Learn the architecture - Introducing SVE2 guide. https://developer.arm.com/documentation/102340/0100/Introducing-SVE2.
[4]
ARM. 2024 b. Neon Instructions. https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-instructions.
[5]
Joy Arulraj, Andrew Pavlo, and Subramanya Dulloor. 2015. Let's Talk About Storage & Recovery Methods for Non-Volatile Memory Database Systems. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. ACM, 707--722. https://doi.org/10.1145/2723372.2749441
[6]
Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Ö zsu. 2013. Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited. Proc. VLDB Endow., Vol. 7, 1 (2013), 85--96. https://doi.org/10.14778/2732219.2732227
[7]
Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Ö zsu. 2015. Main-Memory Hash Joins on Modern Processor Architectures. IEEE Trans. Knowl. Data Eng., Vol. 27, 7 (2015), 1754--1766. https://doi.org/10.1109/TKDE.2014.2313874
[8]
Lawrence Benson, Richard Ebeling, and Tilmann Rabl. 2023. Evaluating SIMD Compiler-Intrinsics for Database Systems. In Joint Proceedings of Workshops at the 49th International Conference on Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28 - September 1, 2023 (CEUR Workshop Proceedings, Vol. 3462). CEUR-WS.org. https://ceur-ws.org/Vol-3462/ADMS5.pdf
[9]
Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and evaluation of main memory hash join algorithms for multi-core CPUs. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, Athens, Greece, June 12--16, 2011. ACM, 37--48. https://doi.org/10.1145/1989323.1989328
[10]
Christian Bö hm and Claudia Plant. 2015. Mining Massive Vector Data on Single Instruction Multiple Data Microarchitectures. In ICDMW. IEEE Computer Society, 597--606. https://doi.org/10.1109/ICDMW.2015.85
[11]
Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. 2008. Breaking the memory wall in MonetDB. Commun. ACM, Vol. 51, 12 (2008), 77--85. https://doi.org/10.1145/1409360.1409380
[12]
Shekhar Borkar and Andrew A. Chien. 2011. The future of microprocessors. Commun. ACM, Vol. 54, 5 (2011), 67--77. https://doi.org/10.1145/1941487.1941507
[13]
Maximilian Bö ther, Lawrence Benson, Ana Klimovic, and Tilmann Rabl. 2023. Analyzing Vectorized Hash Tables Across CPU Architectures. Proc. VLDB Endow., Vol. 16, 11 (2023), 2755--2768. https://doi.org/10.14778/3611479.3611485
[14]
Sebastian Breß, Henning Funke, and Jens Teubner. 2016. Robust Query Processing in Co-Processor-accelerated Databases. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016. ACM, 1891--1906. https://doi.org/10.1145/2882903.2882936
[15]
André Ramos Carneiro, Matheus S. Serpa, and Philippe O. A. Navaux. 2021. Lightweight Deep Learning Applications on AVX-512. In ISCC. IEEE, 1--6. https://doi.org/10.1109/ISCC53001.2021.9631464
[16]
Xinyu Chen, Yao Chen, Ronak Bajaj, Jiong He, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2020. Is FPGA Useful for Hash Joins?. In 10th Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12--15, 2020, Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p27-chen-cidr20.pdf
[17]
Jatin Chhugani, Changkyu Kim, Hemant Shukla, Jongsoo Park, Pradeep Dubey, John Shalf, and Horst D. Simon. 2012. Billion-particle SIMD-friendly two-point correlation on large-scale HPC cluster systems. In SC. IEEE/ACM, 1. https://doi.org/10.1109/SC.2012.24
[18]
Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy, Mostafa Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey. 2008. Efficient implementation of sorting on multi-core SIMD CPU architecture. Proc. VLDB Endow., Vol. 1, 2 (2008), 1313--1324. https://doi.org/10.14778/1454159.1454171
[19]
Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner. 2017. Lightweight Data Compression Algorithms: An Experimental Survey (Experiments and Analyses). In Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21--24, 2017. OpenProceedings.org, 72--83. https://doi.org/10.5441/002/EDBT.2017.08
[20]
Patrick Damme, Annett Ungethü m, Juliana Hildebrandt, Dirk Habich, and Wolfgang Lehner. 2019. From a Comprehensive Experimental Survey to a Cost-based Selection Strategy for Lightweight Integer Compression Algorithms. ACM Trans. Database Syst., Vol. 44, 3 (2019), 9:1--9:46. https://doi.org/10.1145/3323991
[21]
Patrick Damme, Annett Ungethü m, Johannes Pietrzyk, Alexander Krause, Dirk Habich, and Wolfgang Lehner. 2020. MorphStore: Analytical Query Engine with a Holistic Compression-Enabled Processing Model. Proc. VLDB Endow., Vol. 13, 11 (2020), 2396--2410. http://www.vldb.org/pvldb/vol13/p2396-damme.pdf
[22]
Fernando Morgado Dias, Ana Antunes, and Alexandre Manuel Mota. 2004. Artificial neural networks: a review of commercial hardware. Eng. Appl. Artif. Intell., Vol. 17, 8 (2004), 945--952. https://doi.org/10.1016/j.engappai.2004.08.011
[23]
Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park, and David J. DeWitt. 2013. Query processing on smart SSDs: opportunities and challenges. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22--27, 2013. ACM, 1221--1230. https://doi.org/10.1145/2463676.2465295
[24]
Pierre Esté rie, Mathias Gaunard, Joel Falcou, Jean-Thierry Lapresté, and Brigitte Rozoy. 2012. Boost.SIMD: generic programming for portable SIMDization. In PACT. ACM, 431--432. https://doi.org/10.1145/2370816.2370881
[25]
Franz F"a rber, Sang Kyun Cha, Jü rgen Primsch, Christof Bornhö vd, Stefan Sigg, and Wolfgang Lehner. 2011. SAP HANA database: data management for modern business applications. SIGMOD Rec., Vol. 40, 4 (2011), 45--51. https://doi.org/10.1145/2094114.2094126
[26]
Ziqiang Feng and Eric Lo. 2015. Accelerating aggregation using intra-cycle parallelism. In 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13--17, 2015. IEEE Computer Society, 291--302. https://doi.org/10.1109/ICDE.2015.7113292
[27]
Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. 2015. ByteSlice: Pushing the Envelop of Main Memory Data Processing with a New Storage Layout. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. ACM, 31--46. https://doi.org/10.1145/2723372.2747642
[28]
Johannes Fett, Annett Ungethü m, Dirk Habich, and Wolfgang Lehner. 2021. The Case for SIMDified Analytical Query Processing on GPUs. In Proceedings of the 17th International Workshop on Data Management on New Hardware, DaMoN 2021, 21 June 2021, Virtual Event, China. ACM, 14:1--14:5. https://doi.org/10.1145/3465998.3466015
[29]
Pierre Fortin, Ambroise Fleury, Francc ois Lemaire, and Michael B. Monagan. 2021. High-performance SIMD modular arithmetic for polynomial evaluation. Concurr. Comput. Pract. Exp., Vol. 33, 16 (2021). https://doi.org/10.1002/cpe.6270
[30]
Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. 2012. SharedDB: Killing One Thousand Queries With One Stone. Proc. VLDB Endow., Vol. 5, 6 (2012), 526--537. https://doi.org/10.14778/2168651.2168654
[31]
Google. 2024. Highway. https://github.com/google/highway.
[32]
Mathias Gottschlag, Peter Brantsch, and Frank Bellosa. 2020. Automatic Core Specialization for AVX-512 Applications. In SYSTOR 2020: The 13th ACM International Systems and Storage Conference, Haifa, Israel, October 13--15, 2020. ACM, 25--35. https://doi.org/10.1145/3383669.3398282
[33]
Dirk Habich, Patrick Damme, Annett Ungethü m, and Wolfgang Lehner. 2018. Make Larger Vector Register Sizes New Challenges?: Lessons Learned from the Area of Vectorized Lightweight Compression Algorithms. In Proceedings of the 7th International Workshop on Testing Database Systems, DBTest@SIGMOD 2018, Houston, TX, USA, June 15, 2018. ACM, 8:1--8:6. https://doi.org/10.1145/3209950.3209957
[34]
Dirk Habich, Alexander Krause, Johannes Pietrzyk, Christian Faerber, and Wolfgang Lehner. 2023. Simplicity done right for SIMDified query processing on CPU and FPGA. In Proceedings of the 1st Workshop on Simplicity in Management of Data, SiMoD@SIGMOD 2023, Bellevue, WA, USA, 23 June 2023. ACM, 3:1--3:5. https://doi.org/10.1145/3596225.3596229
[35]
Dirk Habich, Johannes Pietrzyk, Alexander Krause, Juliana Hildebrandt, and Wolfgang Lehner. 2022. To use or not to use the SIMD gather instruction?. In International Conference on Management of Data, DaMoN 2022, Philadelphia, PA, USA, 13 June 2022. ACM, 9:1--9:5. https://doi.org/10.1145/3533737.3535089
[36]
Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo, and Pedro V. Sander. 2009. Relational query coprocessing on graphics processors. ACM Trans. Database Syst., Vol. 34, 4 (2009), 21:1--21:39. https://doi.org/10.1145/1620585.1620588
[37]
Juliana Hildebrandt, Dirk Habich, and Wolfgang Lehner. 2023 a. BOUNCE: memory-efficient SIMD approach for lightweight integer compression. Distributed Parallel Databases, Vol. 41, 3 (2023), 439--466. https://doi.org/10.1007/S10619-023-07426-0
[38]
Juliana Hildebrandt, Johannes Pietrzyk, Alexander Krause, Dirk Habich, and Wolfgang Lehner. 2023 b. Partition-based SIMD Processing and its Application to Columnar Database Systems. Datenbank-Spektrum, Vol. 23, 1 (2023), 53--63. https://doi.org/10.1007/S13222-022-00431-0
[39]
Kaisong Huang, Yuliang He, and Tianzheng Wang. 2022. The Past, Present and Future of Indexing on Persistent Memory. Proc. VLDB Endow., Vol. 15, 12 (2022), 3774--3777. https://doi.org/10.14778/3554821.3554897
[40]
Christopher J. Hughes. 2015. Single-Instruction Multiple-Data Execution. Morgan & Claypool Publishers.
[41]
Intel. 2024. AVX-512 Instructions. https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html.
[42]
Wenqi Jiang, Dario Korolija, and Gustavo Alonso. 2023. Data Processing with FPGAs on Modern Architectures. In Companion of the 2023 International Conference on Management of Data, SIGMOD/PODS 2023, Seattle, WA, USA, June 18--23, 2023. ACM, 77--82. https://doi.org/10.1145/3555041.3589410
[43]
Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2017. Adaptive Work Placement for Query Processing on Heterogeneous Computing Resources. Proc. VLDB Endow., Vol. 10, 7 (2017), 733--744. https://doi.org/10.14778/3067421.3067423
[44]
Alfons Kemper and Thomas Neumann. 2014. Main-memory database systems. In IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014. IEEE Computer Society, 1310. https://doi.org/10.1109/ICDE.2014.6816768
[45]
Kazuhiko Komatsu, Shintaro Momose, Yoko Isobe, Osamu Watanabe, Akihiro Musa, Mitsuo Yokokawa, Toshikazu Aoyama, Masayuki Sato, and Hiroaki Kobayashi. 2018. Performance evaluation of a vector supercomputer SX-aurora TSUBASA. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX, USA, November 11--16, 2019. IEEE / ACM, 54:1--54:12. http://dl.acm.org/citation.cfm?id=3291728
[46]
Kazuhiko Komatsu, Akito Onodera, Erich Focht, Soya Fujimoto, Yoko Isobe, Shintaro Momose, Masayuki Sato, and Hiroaki Kobayashi. 2021. Performance and Power Analysis of a Vector Computing System. Supercomput. Front. Innov., Vol. 8, 2 (2021), 75--94. https://doi.org/10.14529/jsfi210205
[47]
Harald Lang, Andreas Kipf, Linnea Passing, Peter A. Boncz, Thomas Neumann, and Alfons Kemper. 2018. Make the most out of your SIMD investments: counter control flow divergence in compiled query pipelines. In Proceedings of the 14th International Workshop on Data Management on New Hardware, Houston, TX, USA, June 11, 2019. ACM, 5:1--5:8. https://doi.org/10.1145/3211922.3211928
[48]
Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second through vectorization. Softw. Pract. Exp., Vol. 45, 1 (2015), 1--29. https://doi.org/10.1002/SPE.2203
[49]
Alberto Lerner, Carsten Binnig, Philippe Cudré -Mauroux, Rana Hussein, Matthias Jasny, Theo Jepsen, Dan R. K. Ports, Lasse Thostrup, and Tobias Ziegler. 2023. Databases on Modern Networks: A Decade of Research that now comes into Practice. Proc. VLDB Endow., Vol. 16, 12 (2023), 3894--3897. https://doi.org/10.14778/3611540.3611579
[50]
Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. 2016. Accelerating Relational Databases by Leveraging Remote Memory and RDMA. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016. ACM, 355--370. https://doi.org/10.1145/2882903.2882949
[51]
Yinan Li and Jignesh M. Patel. 2013. BitWeaving: fast scans for main memory data processing. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22--27, 2013. ACM, 289--300. https://doi.org/10.1145/2463676.2465322
[52]
Nusrat Jahan Lisa, Annett Ungethü m, Dirk Habich, Wolfgang Lehner, Tuan Duy Anh Nguyen, and Akash Kumar. 2018. FPGA vs. SIMD: Comparison for Main Memory-Based Fast Column Scan. In Data Management Technologies and Applications - 7th International Conference, DATA 2018, Porto, Portugal, July 26--28, 2018, Revised Selected Papers (Communications in Computer and Information Science, Vol. 862). Springer, 116--140. https://doi.org/10.1007/978--3-030--26636--3_6
[53]
Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017. BatchDB: Efficient Isolated Execution of Hybrid OLTPOLAP Workloads for Interactive Applications. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14--19, 2017. ACM, 37--50. https://doi.org/10.1145/3035918.3035959
[54]
Prashanth Menon, Andrew Pavlo, and Todd C. Mowry. 2017. Relaxed Operator Fusion for In-Memory Databases: Making Compilation, Vectorization, and Prefetching Work Together At Last. Proc. VLDB Endow., Vol. 11, 1 (2017), 1--13. https://doi.org/10.14778/3151113.3151114
[55]
C. Mohan. 2014. Tutorial: An In-Depth Look at Modern Database Systems. In Proceedings of the 17th International Conference on Extending Database Technology, EDBT 2014, Athens, Greece, March 24--28, 2014. OpenProceedings.org, 674. https://doi.org/10.5441/002/EDBT.2014.72
[56]
René Mü ller and Jens Teubner. 2010. FPGAs: a new point in the database design space. In EDBT 2010, 13th International Conference on Extending Database Technology, Lausanne, Switzerland, March 22--26, 2010, Proceedings (ACM International Conference Proceeding Series, Vol. 426). ACM, 721--723. https://doi.org/10.1145/1739041.1739137
[57]
Ismail Oukid and Wolfgang Lehner. 2017. Data Structure Engineering For Byte-Addressable Non-Volatile Memory. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14--19, 2017. ACM, 1759--1764. https://doi.org/10.1145/3035918.3054777
[58]
Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Ailamaki. 2010. Data-Oriented Transaction Execution. Proc. VLDB Endow., Vol. 3, 1 (2010), 928--939. https://doi.org/10.14778/1920841.1920959
[59]
Pedro Pedreira, Orri Erling, Maria Basmanova, Kevin Wilfong, Laith S. Sakka, Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: Meta's Unified Execution Engine. Proc. VLDB Endow., Vol. 15, 12 (2022), 3372--3384. https://doi.org/10.14778/3554821.3554829
[60]
Johannes Pietrzyk, Dirk Habich, Patrick Damme, Erich Focht, and Wolfgang Lehner. 2019a. Evaluating the Vector Supercomputer SX-Aurora TSUBASA as a Co-Processor for In-Memory Database Systems. Datenbank-Spektrum, Vol. 19, 3 (2019), 183--197. https://doi.org/10.1007/S13222-019-00323-W
[61]
Johannes Pietrzyk, Dirk Habich, and Wolfgang Lehner. 2020. To share or not to share vector registers?. In 16th International Workshop on Data Management on New Hardware, DaMoN 2020, Portland, Oregon, USA, June 15, 2020. ACM, 12:1--12:10. https://doi.org/10.1145/3399666.3399923
[62]
Johannes Pietrzyk, Alexander Krause, Christian Faerber, Dirk Habich, and Wolfgang Lehner. 2024. Program your (custom) SIMD instruction set on FPGA in C. In CIDR 2024. www.cidrdb.org. https://www.cidrdb.org/cidr2024/papers/p53-pietrzyk.pdf
[63]
Johannes Pietrzyk, Alexander Krause, Dirk Habich, and Wolfgang Lehner. 2022. To share or not to share vector registers? VLDB J., Vol. 31, 6 (2022), 1215--1236. https://doi.org/10.1007/S00778-022-00744--2
[64]
Johannes Pietrzyk, Annett Ungethü m, Dirk Habich, and Wolfgang Lehner. 2019b. Fighting the Duplicates in Hashing: Conflict Detection-aware Vectorization of Linear Probing. In BTW (LNI, Vol. P-289 ). Gesellschaft fü r Informatik, Bonn, 35--53. https://doi.org/10.18420/BTW2019-04
[65]
Constantin Pohl, Kai-Uwe Sattler, and Goetz Graefe. 2020. Joins on high-bandwidth memory: a new level in the memory hierarchy. VLDB J., Vol. 29, 2--3 (2020), 797--817. https://doi.org/10.1007/S00778-019-00546-Z
[66]
Fred J. Pollack. 1999. New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies. In Proceedings of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 32, Haifa, Israel, November 16--18, 1999. ACM/IEEE Computer Society, 2. https://doi.org/10.1109/MICRO.1999.10004
[67]
Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking SIMD Vectorization for In-Memory Databases. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. ACM, 1493--1508. https://doi.org/10.1145/2723372.2747645
[68]
Orestis Polychroniou and Kenneth A. Ross. 2013. High throughput heavy hitter aggregation for modern SIMD processors. In Proceedings of the Ninth International Workshop on Data Management on New Hardware, DaMoN 2013, New York, NY, USA, June 24, 2013. ACM, 6. https://doi.org/10.1145/2485278.2485284
[69]
Orestis Polychroniou and Kenneth A. Ross. 2014a. A comprehensive study of main-memory partitioning and its application to large-scale comparison- and radix-sort. In International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22--27, 2014. ACM, 755--766. https://doi.org/10.1145/2588555.2610522
[70]
Orestis Polychroniou and Kenneth A. Ross. 2014b. Vectorized Bloom filters for advanced SIMD processors. In Tenth International Workshop on Data Management on New Hardware, DaMoN 2014, Snowbird, UT, USA, June 23, 2014. ACM, 6:1--6:6. https://doi.org/10.1145/2619228.2619234
[71]
Orestis Polychroniou and Kenneth A. Ross. 2019. Towards Practical Vectorized Analytical Query Engines. In Proceedings of the 15th International Workshop on Data Management on New Hardware, DaMoN 2019, Amsterdam, The Netherlands, 1 July 2019. ACM, 10:1--10:7. https://doi.org/10.1145/3329785.3329928
[72]
Orestis Polychroniou and Kenneth A. Ross. 2020. VIP: A SIMD vectorized analytical query engine. VLDB J., Vol. 29, 6 (2020), 1243--1261. https://doi.org/10.1007/S00778-020-00621-W
[73]
Wolf Rö diger, Tobias Mü hlbauer, Alfons Kemper, and Thomas Neumann. 2015. High-Speed Query Processing over High-Speed Networks. Proc. VLDB Endow., Vol. 9, 4 (2015), 228--239. https://doi.org/10.14778/2856318.2856319
[74]
Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, Daehyun Kim, and Pradeep Dubey. 2010. Fast sort on CPUs and GPUs: a case for bandwidth oblivious SIMD sort. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6--10, 2010. ACM, 351--362. https://doi.org/10.1145/1807167.1807207
[75]
Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. 2010. Fast integer compression using SIMD instructions. In Proceedings of the Sixth International Workshop on Data Management on New Hardware, DaMoN 2010, Indianapolis, IN, USA, June 7, 2010. ACM, 34--40. https://doi.org/10.1145/1869389.1869394
[76]
Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Fundamental Performance Characteristics of GPUs and CPUs for Database Analytics. In Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14--19, 2020. ACM, 1617--1632. https://doi.org/10.1145/3318464.3380595
[77]
William J. Starke, Brian W. Thompto, Jeffrey Stuecheli, and José E. Moreira. 2021. IBM's POWER10 Processor. IEEE Micro, Vol. 41, 2 (2021), 7--14. https://doi.org/10.1109/MM.2021.3058632
[78]
Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanaë l Pré millieu, Alastair Reid, Alejandro Rico, and Paul Walker. 2017. The ARM Scalable Vector Extension. IEEE Micro, Vol. 37, 2 (2017), 26--39. https://doi.org/10.1109/MM.2017.35
[79]
Keichi Takahashi, Soya Fujimoto, Satoru Nagase, Yoko Isobe, Yoichi Shimomura, Ryusuke Egawa, and Hiroyuki Takizawa. 2023. Performance Evaluation of a Next-Generation SX-Aurora TSUBASA Vector Supercomputer. In High Performance Computing - 38th International Conference, ISC High Performance 2023, Hamburg, Germany, May 21--25, 2023, Proceedings (Lecture Notes in Computer Science, Vol. 13948). Springer, 359--378. https://doi.org/10.1007/978--3-031--32041--5_19
[80]
Michael B. Taylor. 2012. Is dark silicon useful?: harnessing the four horsemen of the coming dark silicon apocalypse. In The 49th Annual Design Automation Conference 2012, DAC '12, San Francisco, CA, USA, June 3--7, 2012. ACM, 1131--1136. https://doi.org/10.1145/2228360.2228567
[81]
The CXL Consortium. 2024. Compute Express Link. https://www.computeexpresslink.org/.
[82]
Annett Ungethü m, Johannes Pietrzyk, Patrick Damme, Dirk Habich, and Wolfgang Lehner. 2018. Conflict Detection-Based Run-Length Encoding - AVX-512 CD Instruction Set in Action. In 34th IEEE International Conference on Data Engineering Workshops, ICDE Workshops 2018, Paris, France, April 16--20, 2019. IEEE Computer Society, 96--101. https://doi.org/10.1109/ICDEW.2018.00023
[83]
Annett Ungethü m, Johannes Pietrzyk, Patrick Damme, Alexander Krause, Dirk Habich, Wolfgang Lehner, and Erich Focht. 2020. Hardware-Oblivious SIMD Parallelism for In-Memory Column-Stores. In 10th Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12--15, 2020, Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p28-ungethuem-cidr20.pdf
[84]
Annett Ungethü m, Lennart Schmidt, Johannes Pietrzyk, Dirk Habich, and Wolfgang Lehner. 2021. Mastering the NEC Vector Engine Accelerator for Analytical Query Processing. In 37th IEEE International Conference on Data Engineering Workshops, ICDE Workshops 2021, Chania, Greece, April 19--22, 2021. IEEE, 60--65. https://doi.org/10.1109/ICDEW53142.2021.00018
[85]
Stratis D. Viglas. 2015. Data Management in Non-Volatile Memory. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. ACM, 1707--1711. https://doi.org/10.1145/2723372.2731082
[86]
Pablo Vizcaino, Georgios Ieronymakis, Nikolaos Dimou, Vassilis Papaefstathiou, Jesú s Labarta, and Filippo Mantovani. 2023. Short Reasons for Long Vectors in HPC CPUs: A Study Based on RISC-V. In Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, SC-W 2023, Denver, CO, USA, November 12--17, 2023. ACM, 1543--1549. https://doi.org/10.1145/3624062.3624231
[87]
Marten Wallewein-Eising, David Broneske, and Gunter Saake. 2018. SIMD Acceleration for Main-Memory Index Structures - A Survey. In Beyond Databases, Architectures and Structures. Facing the Challenges of Data Proliferation and Growing Variety - 14th International Conference, BDAS 2018, Held at the 24th IFIP World Computer Congress, WCC 2018, Poznan, Poland, September 18--20, 2018, Proceedings (Communications in Computer and Information Science, Vol. 928). Springer, 105--119. https://doi.org/10.1007/978--3--319--99987--6_8
[88]
Haichuan Wang, Peng Wu, Ilie Gabriel Tanase, Mauricio J. Serrano, and José E. Moreira. 2014. Simple, portable and fast SIMD intrinsic programming: generic simd library. In WPMVP. ACM, 9--16. https://doi.org/10.1145/2568058.2568059
[89]
Jianguo Wang and Qizhen Zhang. 2023. Disaggregated Database Systems. In Companion of the 2023 International Conference on Management of Data, SIGMOD/PODS 2023, Seattle, WA, USA, June 18--23, 2023. ACM, 37--44. https://doi.org/10.1145/3555041.3589403
[90]
Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier, and Jan Schaffner. 2009. SIMD-Scan: Ultra Fast in-Memory Table Scan using on-Chip Vector Processing Units. Proc. VLDB Endow., Vol. 2, 1 (2009), 385--394. https://doi.org/10.14778/1687627.1687671
[91]
Yuan Xie and Jishen Zhao. 2019. Emerging Memory Technologies. IEEE Micro, Vol. 39, 1 (2019), 6--7. https://doi.org/10.1109/MM.2019.2892165
[92]
XTensor-Stack. 2024. XSIMD. https://github.com/xtensor-stack/xsimd.
[93]
Mikhail Zarubin, Patrick Damme, Alexander Krause, Dirk Habich, and Wolfgang Lehner. 2021. SIMD-MIMD cocktail in a hybrid memory glass: shaken, not stirred. In SYSTOR. ACM. https://doi.org/10.1145/3456727.3463782
[94]
Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang. 2015. In-Memory Big Data Management and Processing: A Survey. IEEE Trans. Knowl. Data Eng., Vol. 27, 7 (2015), 1920--1948. https://doi.org/10.1109/TKDE.2015.2427795
[95]
Wayne Xin Zhao, Xudong Zhang, Daniel Lemire, Dongdong Shan, Jian-Yun Nie, Hongfei Yan, and Ji-Rong Wen. 2015. A General SIMD-Based Approach to Accelerating Compression Algorithms. ACM Trans. Inf. Syst., Vol. 33, 3 (2015), 15:1--15:28. https://doi.org/10.1145/2735629
[96]
Jingren Zhou and Kenneth A. Ross. 2002. Implementing database operations using SIMD instructions. In Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, Madison, Wisconsin, USA, June 3--6, 2002. ACM, 145--156. https://doi.org/10.1145/564691.564709

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD/PODS '24: Companion of the 2024 International Conference on Management of Data
June 2024
694 pages
ISBN:9798400704222
DOI:10.1145/3626246
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 June 2024

Check for updates

Author Tags

  1. FPGA
  2. SIMD
  3. abstraction
  4. data access patterns
  5. query processing

Qualifiers

  • Tutorial

Funding Sources

  • German Research Foundation
  • EU

Conference

SIGMOD/PODS '24
Sponsor:

Acceptance Rates

Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 435
    Total Downloads
  • Downloads (Last 12 months)435
  • Downloads (Last 6 weeks)76
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media