Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3627673.3679627acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Buffalo: Biomedical Vision-Language Understanding with Cross-Modal Prototype and Federated Foundation Model Collaboration

Published: 21 October 2024 Publication History

Abstract

Federated learning (FL) enables collaborative learning across multiple biomedical data silos with multimodal foundation models while preserving privacy. Due to the heterogeneity in data processing and collection methodologies across diverse medical institutions and the varying medical inspections patients undergo, modal heterogeneity exists in practical scenarios, where severe modal heterogeneity may even prevent model training. With privacy considerations, data transfer cannot be permitted, restricting knowledge exchange among different clients. To trickle these issues, we propose a cross-modal prototype imputation method for visual-language understanding (Buffalo) with only a slight increase in communication cost, which can improve the performance of fine-tuning general foundation models for downstream biomedical tasks. We conducted extensive experiments on medical report generation and biomedical visual question-answering tasks. The results demonstrate that Buffalo can fully utilize data from all clients to improve model generalization compared to other modal imputation methods in three modal heterogeneity scenarios, approaching or even surpassing the performance in the ideal scenario without missing modality.

References

[1]
Accountability Act. 1996. Health insurance portability and accountability act of 1996. Public law, Vol. 104 (1996), 191.
[2]
Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, Jade Goldstein, Alon Lavie, Chin-Yew Lin, and Clare Voss (Eds.). Association for Computational Linguistics, Ann Arbor, Michigan, 65--72. https://aclanthology.org/W05-0909
[3]
Elliot Bolton, Abhinav Venigalla, Michihiro Yasunaga, David Hall, Betty Xiong, Tony Lee, Roxana Daneshjou, Jonathan Frankle, Percy Liang, Michael Carbin, and Christopher D. Manning. 2024. BioMedLM: A 2.7B Parameter Language Model Trained On Biomedical Text. arxiv: 2403.18421 [cs.CL]
[4]
Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2022. On the Opportunities and Risks of Foundation Models. arxiv: 2108.07258 [cs.LG] https://arxiv.org/abs/2108.07258
[5]
Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. 2020. Fedhealth: A federated transfer learning framework for wearable healthcare. IEEE Intelligent Systems, Vol. 35, 4 (2020), 83--93.
[6]
Dina Demner-Fushman, Marc D Kohli, Marc B Rosenman, Sonya E Shooshan, Laritza Rodriguez, Sameer Antani, George R Thoma, and Clement J McDonald. 2016. Preparing a collection of radiology examinations for distribution and retrieval. Journal of the American Medical Informatics Association, Vol. 23, 2 (2016), 304--310.
[7]
Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM: General Language Model Pretraining with Autoregressive Blank Infilling. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics, Dublin, Ireland, 320--335. https://doi.org/10.18653/v1/2022.acl-long.26
[8]
Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. 2006 a. Our Data, Ourselves: Privacy Via Distributed Noise Generation. In Advances in Cryptology - EUROCRYPT 2006, Serge Vaudenay (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 486--503.
[9]
Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006 b. Calibrating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography, Shai Halevi and Tal Rabin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 265--284.
[10]
Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, Vol. 9, 3--4 (2014), 211--407.
[11]
Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (Scottsdale, Arizona, USA) (CCS '14). Association for Computing Machinery, New York, NY, USA, 1054--1067. https://doi.org/10.1145/2660267.2660348
[12]
William A Falcon. 2019. Pytorch lightning. showeprint[github]GitHub
[13]
Nanyi Fei, Zhiwu Lu, Yizhao Gao, Guoxing Yang, Yuqi Huo, Jingyuan Wen, Haoyu Lu, Ruihua Song, Xin Gao, Tao Xiang, et al. 2022. Towards artificial general intelligence via a multimodal foundation model. Nature Communications, Vol. 13, 1 (2022), 3094.
[14]
Tiantian Feng, Digbalay Bose, Tuo Zhang, Rajat Hebbar, Anil Ramakrishna, Rahul Gupta, Mi Zhang, Salman Avestimehr, and Shrikanth Narayanan. 2023. FedMultimodal: A Benchmark for Multimodal Federated Learning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Long Beach, CA, USA) (KDD '23). Association for Computing Machinery, New York, NY, USA, 4035--4045. https://doi.org/10.1145/3580305.3599825
[15]
Pengfei Guo, Puyang Wang, Jinyuan Zhou, Shanshan Jiang, and Vishal M. Patel. 2021. Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2423--2432. https://doi.org/10.1109/CVPR46437.2021.00245
[16]
John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means clustering algorithm. Journal of the royal statistical society. series c (applied statistics), Vol. 28, 1 (1979), 100--108.
[17]
Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large Language Models. In International Conference on Learning Representations. https://openreview.net/forum?id=nZeVKeeFYf9
[18]
Xuefeng Jiang, Sheng Sun, Yuwei Wang, and Min Liu. 2022. Towards Federated Learning against Noisy Labels via Local Self-Regularization. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (Atlanta, GA, USA) (CIKM '22). Association for Computing Machinery, New York, NY, USA, 862--873. https://doi.org/10.1145/3511808.3557475
[19]
Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. 2021. Advances and open problems in federated learning. Foundations and trends® in machine learning, Vol. 14, 1--2 (2021), 1--210.
[20]
Meina Kan, Shiguang Shan, and Xilin Chen. 2016. Multi-view deep network for cross-view classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4847--4855.
[21]
Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. 2018. A dataset of clinically generated visual questions and answers about radiology images. Scientific data, Vol. 5, 1 (2018), 1--10.
[22]
Suhyeon Lee, Won Jun Kim, Jinho Chang, and Jong Chul Ye. 2023. LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation. In The Twelfth International Conference on Learning Representations.
[23]
Seowoo Lee, Jiwon Youn, Hyungjin Kim, Mansu Kim, and Soon Ho Yoon. 2024. CXR-LLAVA: a multimodal large language model for interpreting chest X-ray images. arxiv: 2310.18341 [cs.CL] https://arxiv.org/abs/2310.18341
[24]
Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Naumann, Hoifung Poon, and Jianfeng Gao. 2024. LLaVA-med: training a large language-and-vision assistant for biomedicine in one day. In Proceedings of the 37th International Conference on Neural Information Processing Systems (New Orleans, LA, USA) (NIPS '23). Curran Associates Inc., Red Hook, NY, USA, Article 1240, 24 pages.
[25]
Hongzhao Li, Hongyu Wang, Xia Sun, Hua He, and Jun Feng. 2024. Prompt-Guided Generation of Structured Chest X-Ray Report Using a Pre-trained LLM. arxiv: 2404.11209 [cs.AI]
[26]
Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. 2022. Federated Learning on Non-IID Data Silos: An Experimental Study. In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE. https://doi.org/10.1109/icde53745.2022.00077
[27]
Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. 2021. FedBN: Federated Learning on Non-IID Features via Local Batch Normalization. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3--7, 2021. OpenReview.net. https://openreview.net/forum?id=6YEQUn0QICG
[28]
Z. Lian, L. Chen, L. Sun, B. Liu, and J. Tao. 2023. GCNet: Graph Completion Network for Incomplete Multimodal Learning in Conversation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 45, 07 (jul 2023), 8419--8432. https://doi.org/10.1109/TPAMI.2023.3234553
[29]
Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization Branches Out. Association for Computational Linguistics, Barcelona, Spain, 74--81. https://aclanthology.org/W04--1013
[30]
Yi-Ming Lin, Yuan Gao, Mao-Guo Gong, Si-Jia Zhang, Yuan-Qiao Zhang, and Zhi-Yuan Li. 2023. Federated learning on multimodal data: A comprehensive survey. Machine Intelligence Research, Vol. 20, 4 (2023), 539--553.
[31]
Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Fang Yang, and Xiao-Ming Wu. 2021. Slake: A Semantically-Labeled Knowledge-Enhanced Dataset For Medical Visual Question Answering. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) (2021), 1650--1654. https://api.semanticscholar.org/CorpusID:231951663
[32]
Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual Instruction Tuning. In Advances in Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates, Inc., 34892--34916. https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf
[33]
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. 2021. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE Computer Society, Los Alamitos, CA, USA, 9992--10002. https://doi.org/10.1109/ICCV48922.2021.00986
[34]
Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu. 2022. BioGPT: generative pre-trained transformer for biomedical text generation and mining. Briefings in bioinformatics, Vol. 23, 6 (2022), bbac409.
[35]
Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang, Yushuai Wu, Mu Qiao, and Zaiqing Nie. 2023. BioMedGPT: Open Multimodal Generative Pre-trained Transformer for BioMedicine. arxiv: 2308.09442 [cs.CE]
[36]
Fei Ma, Xiangxiang Xu, Shao-Lun Huang, and Lin Zhang. 2021. Maximum Likelihood Estimation for Multimodal Learning with Missing Modality. arxiv: 2108.10513 [cs.LG]
[37]
Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 54), Aarti Singh and Jerry Zhu (Eds.). PMLR, 1273--1282. https://proceedings.mlr.press/v54/mcmahan17a.html
[38]
Dinh C Nguyen, Quoc-Viet Pham, Pubudu N Pathirana, Ming Ding, Aruna Seneviratne, Zihuai Lin, Octavia Dobre, and Won-Joo Hwang. 2022. Federated learning for smart healthcare: A survey. ACM Computing Surveys (CSUR), Vol. 55, 3 (2022), 1--37.
[39]
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (Philadelphia, Pennsylvania) (ACL '02). Association for Computational Linguistics, USA, 311--318. https://doi.org/10.3115/1073083.1073135
[40]
Jaehyoung Park and Hyuk Lim. 2022. Privacy-preserving federated learning using homomorphic encryption. Applied Sciences, Vol. 12, 2 (2022), 734.
[41]
Srinivas Parthasarathy and Shiva Sundaram. 2021. Training Strategies to Handle Missing Modalities for Audio-Visual Expression Recognition. In Companion Publication of the 2020 International Conference on Multimodal Interaction (Virtual Event, Netherlands) (ICMI '20 Companion). Association for Computing Machinery, New York, NY, USA, 400--404. https://doi.org/10.1145/3395035.3425202
[42]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: an imperative style, high-performance deep learning library. Curran Associates Inc., Red Hook, NY, USA.
[43]
General Data Protection Regulation. 2018. General Data Protection Regulation (GDPR). Intersoft Consulting, Accessed in October, Vol. 24, 1 (2018).
[44]
Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al. 2020. The future of digital health with federated learning. NPJ digital medicine, Vol. 3, 1 (2020), 119.
[45]
A. Sebert, M. Checri, O. Stan, R. Sirdey, and C. Gouy-Pailler. 2023. Combining homomorphic encryption and differential privacy in federated learning. In 2023 20th Annual International Conference on Privacy, Security and Trust (PST). IEEE Computer Society, Los Alamitos, CA, USA, 1--7. https://doi.org/10.1109/PST58708.2023.10320195
[46]
Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models. arxiv: 2307.09288 [cs.CL]
[47]
Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. 2020. LDP-Fed: federated learning with local differential privacy. In Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking (Heraklion, Greece) (EdgeSys '20). Association for Computing Machinery, New York, NY, USA, 61--66. https://doi.org/10.1145/3378679.3394533
[48]
Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. 2015. CIDEr: Consensus-based image description evaluation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 4566--4575. https://doi.org/10.1109/CVPR.2015.7299087
[49]
Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. 2020. Federated Learning with Matched Averaging. In International Conference on Learning Representations. https://openreview.net/forum?id=BkluqlSFDS
[50]
Zifeng Wang, Zhenbang Wu, Dinesh Agarwal, and Jimeng Sun. 2022. MedCLIP: Contrastive Learning from Unpaired Medical Images and Text. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 3876--3887. https://doi.org/10.18653/v1/2022.emnlp-main.256
[51]
Chengkun Wei, Shouling Ji, Changchang Liu, Wenzhi Chen, and Ting Wang. 2020. AsgLDP: collecting and generating decentralized attributed graphs with local differential privacy. IEEE Transactions on Information Forensics and Security, Vol. 15 (2020), 3239--3254.
[52]
Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek, and H Vincent Poor. 2020. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, Vol. 15 (2020), 3454--3469.
[53]
Bingjie Yan, Danmin Cao, Xinlong Jiang, Yiqiang Chen, Weiwei Dai, Fan Dong, Wuliang Huang, Teng Zhang, Chenlong Gao, Qian Chen, et al. 2024. FedEYE: A Scalable and Flexible End-to-end Federated Learning Platform for Ophthalmology. Patterns (2024).
[54]
Yunlu Yan, Chun-Mei Feng, Yuexiang Li, Rick Siow Mong Goh, and Lei Zhu. 2023. Federated Pseudo Modality Generation for Incomplete Multi-Modal MRI Reconstruction. arxiv: 2308.10910 [eess.IV] https://arxiv.org/abs/2308.10910
[55]
Mengmeng Yang, Lingjuan Lyu, Jun Zhao, Tianqing Zhu, and Kwok-Yan Lam. 2020. Local Differential Privacy and Its Applications: A Comprehensive Survey. arxiv: 2008.03686 [cs.CR] https://arxiv.org/abs/2008.03686
[56]
Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), Vol. 10, 2 (2019), 1--19.
[57]
Xuefei Yin, Yanming Zhu, and Jiankun Hu. 2021. A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions. ACM Computing Surveys (CSUR), Vol. 54, 6 (2021), 1--36.
[58]
Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. 2021. Federated Continual Learning with Weighted Inter-client Transfer. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18--24 July 2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 12073--12086. http://proceedings.mlr.press/v139/yoon21b.html
[59]
Xiaotong Yuan and Ping Li. 2022. On Convergence of FedProx: Local Dissimilarity Invariant Bounds, Non-smoothness and Beyond. In NeurIPS.
[60]
Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023. GLM-130B: An Open Bilingual Pre-trained Model. arxiv: 2210.02414 [cs.CL] https://arxiv.org/abs/2210.02414
[61]
Li Zhang, Jianbo Xu, Pandi Vijayakumar, Pradip Kumar Sharma, and Uttam Ghosh. 2023. Homomorphic Encryption-Based Privacy-Preserving Federated Learning in IoT-Enabled Healthcare System. IEEE Transactions on Network Science and Engineering, Vol. 10, 5 (2023), 2864--2880. https://doi.org/10.1109/TNSE.2022.3185327
[62]
Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. iDLG: Improved Deep Leakage from Gradients. arxiv: 2001.02610 [cs.LG] https://arxiv.org/abs/2001.02610
[63]
Yuchen Zhao, Payam Barnaghi, and Hamed Haddadi. 2022. Multimodal Federated Learning on IoT Data. In 2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI). 43--54. https://doi.org/10.1109/IoTDI54339.2022.00011
[64]
Yang Zhao, Jun Zhao, Mengmeng Yang, Teng Wang, Ning Wang, Lingjuan Lyu, Dusit Niyato, and Kwok-Yan Lam. 2020. Local differential privacy-based federated learning for internet of things. IEEE Internet of Things Journal, Vol. 8, 11 (2020), 8836--8853.
[65]
Tianyue Zheng, Ang Li, Zhe Chen, Hongbo Wang, and Jun Luo. 2023. AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust Autonomous Driving. Association for Computing Machinery, New York, NY, USA, Chapter 15, 15. https://doi.org/10.1145/3570361.3592517
[66]
Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep Leakage from Gradients. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. dtextquotesingle Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf

Index Terms

  1. Buffalo: Biomedical Vision-Language Understanding with Cross-Modal Prototype and Federated Foundation Model Collaboration

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CIKM '24: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management
    October 2024
    5705 pages
    ISBN:9798400704369
    DOI:10.1145/3627673
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 21 October 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. biomedical vision-language understanding
    2. cross-modal prototype
    3. federated learning
    4. modal heterogeneity
    5. multi-modal

    Qualifiers

    • Research-article

    Funding Sources

    • Hunan Provincial Natural Science Foundation of China
    • the National Key Research and Development Plan of China
    • the Youth Innovation Promotion Association CAS
    • the Science and Technology Innovation Program of Hunan Province
    • the Postdoctoral Fellowship Program of CPSF

    Conference

    CIKM '24
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

    Upcoming Conference

    CIKM '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 146
      Total Downloads
    • Downloads (Last 12 months)146
    • Downloads (Last 6 weeks)32
    Reflects downloads up to 25 Jan 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media