Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Predictive and Near-Optimal Sampling for View Materialization in Video Databases

Published: 26 March 2024 Publication History
  • Get Citation Alerts
  • Abstract

    Scalable video query optimization has re-emerged as an attractive research topic in recent years. The OTIF system, a video database with cutting-edge efficiency, has introduced a new paradigm of utilizing view materialization to facilitate online query processing. Specifically, it stores the results of multi-object tracking queries to answer common video queries with sub-second latency. However, the cost associated with view materialization in OTIF is prohibitively high for supporting large-scale video streams.
    In this paper, we study efficient MOT-based view materialization in video databases. We first conduct a theoretical analysis and establish two types of optimality measures that serve as lower bounds for video frame sampling. In order to minimize the number of processed video frames, we propose a novel predictive sampling framework, namely LEAP, exhibits near-optimal sampling performance. Its efficacy relies on a data-driven motion manager that enables accurate trajectory prediction, a compact object detection model via knowledge distillation, and a robust cross-frame associator to connect moving objects in two frames with a large time gap.
    Extensive experiments are conducted in 7 real datasets, with 7 baselines and a comprehensive query set, including selection, aggregation and top-k queries. The results show that with comparable query accuracy to OTIF, our LEAP can reduce the number of processed video frames by up to 9× and achieve 5× speedup in query processing time. Moreover, LEAP demonstrates impressive throughput when handling large-scale video streams, as it leverages a single NVIDIA RTX 3090ti GPU to support real-time MOT-based view materialization from 160 video streams simultaneously.

    References

    [1]
    Michael R. Anderson, Michael J. Cafarella, Germán Ros, and Thomas F. Wenisch. 2019. Physical Representation-Based Predicate Optimization for a Visual Analytics Database. In 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, April 8--11, 2019. IEEE, 1466--1477. https://doi.org/10.1109/ICDE.2019.00132
    [2]
    Jack Baker, Paul Fearnhead, Emily B. Fox, and Christopher Nemeth. 2019. Control variates for stochastic gradient MCMC. Stat. Comput., Vol. 29, 3 (2019), 599--615. https://doi.org/10.1007/s11222-018--9826--2
    [3]
    Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mohammad Alizadeh, Hari Balakrishnan, Michael J. Cafarella, Tim Kraska, and Sam Madden. 2020. MIRIS: Fast Object Track Queries in Video. In Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14--19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1907--1921. https://doi.org/10.1145/3318464.3389692
    [4]
    Favyen Bastani and Samuel Madden. 2022. OTIF: Efficient Tracker Pre-processing over Large Video Datasets. In SIGMOD '22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 2091--2104. https://doi.org/10.1145/3514221.3517835
    [5]
    Jiashen Cao, Karan Sarkar, Ramyad Hadidi, Joy Arulraj, and Hyesoon Kim. 2022. FiGO: Fine-Grained Query Optimization in Video Analytics. In SIGMOD '22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 559--572. https://doi.org/10.1145/3514221.3517857
    [6]
    Pramod Chunduri, Jaeho Bang, Yao Lu, and Joy Arulraj. 2022. Zeus: Efficiently Localizing Actions in Videos using Reinforcement Learning. In SIGMOD '22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 545--558. https://doi.org/10.1145/3514221.3526181
    [7]
    David L. Davies and Donald W. Bouldin. 1979. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 1, 2 (1979), 224--227. https://doi.org/10.1109/TPAMI.1979.4766909
    [8]
    Jeff Erickson. 2019. Algorithms. http://jeffe.cs.illinois.edu/teaching/algorithms/
    [9]
    Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John M. Winn, and Andrew Zisserman. 2015. The Pascal Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vis., Vol. 111, 1 (2015), 98--136. https://doi.org/10.1007/s11263-014-0733--5
    [10]
    M Maurice Fréchet. 1906. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo (1884--1940), Vol. 22, 1 (1906), 1--72.
    [11]
    Adhiraj Ghosh, Kuruparan Shanmugalingam, and Wen-Yan Lin. 2021. Relation Preserving Triplet Mining for Stabilizing the Triplet Loss in Vehicle Re-identification. CoRR, Vol. abs/2110.07933 (2021). showeprint[arXiv]2110.07933 https://arxiv.org/abs/2110.07933
    [12]
    Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien Moutarde. 2021. HOME: Heatmap Output for future Motion Estimation. In 24th IEEE International Intelligent Transportation Systems Conference, ITSC 2021, Indianapolis, IN, USA, September 19--22, 2021. IEEE, 500--507. https://doi.org/10.1109/ITSC48978.2021.9564944
    [13]
    Junru Gu, Chen Sun, and Hang Zhao. 2021. DenseTNT: End-to-end Trajectory Prediction from Dense Goal Sets. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10--17, 2021. IEEE, 15283--15292. https://doi.org/10.1109/ICCV48922.2021.01502
    [14]
    Lingxiao He, Xingyu Liao, Wu Liu, Xinchen Liu, Peng Cheng, and Tao Mei. 2020. FastReID: A Pytorch Toolbox for General Instance Re-identification. CoRR, Vol. abs/2006.02631 (2020). showeprint[arXiv]2006.02631 https://arxiv.org/abs/2006.02631
    [15]
    Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowledge in a Neural Network. CoRR, Vol. abs/1503.02531 (2015). showeprint[arXiv]1503.02531 http://arxiv.org/abs/1503.02531
    [16]
    Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman, Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons, and Onur Mutlu. 2018. Focus: Querying Large Video Datasets with Low Latency and Low Cost. In 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8--10, 2018, Andrea C. Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX Association, 269--286. https://www.usenix.org/conference/osdi18/presentation/hsieh
    [17]
    Bo Hu, Peizhen Guo, and Wenjun Hu. 2022. Video-zilla: An Indexing Layer for Large-Scale Video Analytics. In SIGMOD '22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 1905--1919. https://doi.org/10.1145/3514221.3517840
    [18]
    Yanjun Huang, Jiatong Du, Ziru Yang, Zewei Zhou, Lin Zhang, and Hong Chen. 2022. A Survey on Trajectory-Prediction Methods for Autonomous Driving. IEEE Trans. Intell. Veh., Vol. 7, 3 (2022), 652--674. https://doi.org/10.1109/TIV.2022.3167103
    [19]
    Glenn Jocher. 2020. YOLOv5 by Ultralytics. https://doi.org/10.5281/zenodo.3908559
    [20]
    Joshua Mason Joseph, Finale Doshi-Velez, Albert S. Huang, and Nicholas Roy. 2011. A Bayesian nonparametric approach to modeling motion patterns. Auton. Robots, Vol. 31, 4 (2011), 383--400. https://doi.org/10.1007/s10514-011--9248-x
    [21]
    Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. BlazeIt: Optimizing Declarative Aggregation and Limit Queries for Neural Network-Based Video Analytics. Proc. VLDB Endow., Vol. 13, 4 (2019), 533--546. https://doi.org/10.14778/3372716.3372725
    [22]
    Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017. NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale. Proc. VLDB Endow., Vol. 10, 11 (2017), 1586--1597. https://doi.org/10.14778/3137628.3137664
    [23]
    Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, Yi Sun, and Matei Zaharia. 2021. Accelerating Approximate Aggregation Queries with Expensive Predicates. Proc. VLDB Endow., Vol. 14, 11 (2021), 2341--2354. https://doi.org/10.14778/3476249.3476285
    [24]
    Daniel Kang, John Guibas, Peter D. Bailis, Tatsunori Hashimoto, and Matei Zaharia. 2022. TASTI: Semantic Indexes for Machine Learning-based Queries over Unstructured Data. In SIGMOD '22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 1934--1947. https://doi.org/10.1145/3514221.3517897
    [25]
    Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, and Matei Zaharia. 2020. Jointly Optimizing Preprocessing and Inference for DNN-based Visual Analytics. Proc. VLDB Endow., Vol. 14, 2 (2020), 87--100. https://doi.org/10.14778/3425879.3425881
    [26]
    Leonard Kaufman and Peter J Rousseeuw. 2009. Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.
    [27]
    Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 2013. 3D Object Representations for Fine-Grained Categorization. In 2013 IEEE International Conference on Computer Vision Workshops, ICCV Workshops 2013, Sydney, Australia, December 1--8, 2013. IEEE Computer Society, 554--561. https://doi.org/10.1109/ICCVW.2013.77
    [28]
    Ziliang Lai, Chenxia Han, Chris Liu, Pengfei Zhang, Eric Lo, and Ben Kao. 2021. Top-K Deep Video Analytics: A Probabilistic Approach. In SIGMOD '21: International Conference on Management of Data, Virtual Event, China, June 20--25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1037--1050. https://doi.org/10.1145/3448016.3452786
    [29]
    Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A Query-Aware Database Tuning System with Deep Reinforcement Learning. Proc. VLDB Endow., Vol. 12, 12 (2019), 2118--2130. https://doi.org/10.14778/3352063.3352129
    [30]
    Zepeng Li, Dongxiang Zhang, Yanyan Shen, and Gang Chen. 2023. Human-in-the-Loop Vehicle ReID. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7--14, 2023, Brian Williams, Yiling Chen, and Jennifer Neville (Eds.). AAAI Press, 6048--6055. https://doi.org/10.1609/AAAI.V37I5.25747
    [31]
    Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Belongie. 2017. Feature Pyramid Networks for Object Detection. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21--26, 2017. IEEE Computer Society, 936--944. https://doi.org/10.1109/CVPR.2017.106
    [32]
    Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common Objects in Context. In Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6--12, 2014, Proceedings, Part V (Lecture Notes in Computer Science, Vol. 8693), David J. Fleet, Tomá s Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.). Springer, 740--755. https://doi.org/10.1007/978--3--319--10602--1_48
    [33]
    Yiheng Liu, Junta Wu, and Yi Fu. 2023. Collaborative Tracking Learning for Frame-Rate-Insensitive Multi-Object Tracking. CoRR, Vol. abs/2308.05911 (2023). https://doi.org/10.48550/arXiv.2308.05911 showeprint[arXiv]2308.05911
    [34]
    Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. 2021. Multimodal Motion Prediction With Stacked Transformers. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19--25, 2021. Computer Vision Foundation / IEEE, 7577--7586. https://doi.org/10.1109/CVPR46437.2021.00749
    [35]
    Rakesh Mehta and Cemalettin Öztürk. 2018. Object Detection at 200 Frames per Second. In Computer Vision - ECCV 2018 Workshops - Munich, Germany, September 8--14, 2018, Proceedings, Part V (Lecture Notes in Computer Science, Vol. 11133), Laura Leal-Taixé and Stefan Roth (Eds.). Springer, 659--675. https://doi.org/10.1007/978--3-030--11021--5_41
    [36]
    Oscar R. Moll, Favyen Bastani, Sam Madden, Mike Stonebraker, Vijay Gadepally, and Tim Kraska. 2022. ExSample: Efficient Searches on Video Repositories through Adaptive Sampling. In 38th IEEE International Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9--12, 2022. IEEE, 2956--2968. https://doi.org/10.1109/ICDE53745.2022.00266
    [37]
    Tung Phan-Minh, Elena Corina Grigore, Freddy A. Boulton, Oscar Beijbom, and Eric M. Wolff. 2020. CoverNet: Multimodal Behavior Prediction Using Trajectory Sets. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13--19, 2020. Computer Vision Foundation / IEEE, 14062--14071. https://doi.org/10.1109/CVPR42600.2020.01408
    [38]
    Shaojie Qiao, Dayong Shen, Xiaoteng Wang, Nan Han, and William Zhu. 2015. A Self-Adaptive Parameter Selection Trajectory Prediction Approach via Hidden Markov Models. IEEE Trans. Intell. Transp. Syst., Vol. 16, 1 (2015), 284--296. https://doi.org/10.1109/TITS.2014.2331758
    [39]
    Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, Faster, Stronger. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21--26, 2017. IEEE Computer Society, 6517--6525. https://doi.org/10.1109/CVPR.2017.690
    [40]
    Francisco Romero, Johann Hauswald, Aditi Partap, Daniel Kang, Matei Zaharia, and Christos Kozyrakis. 2022. Optimizing Video Analytics with Declarative Model Relationships. Proc. VLDB Endow., Vol. 16, 3 (2022), 447--460. https://www.vldb.org/pvldb/vol16/p447-romero.pdf
    [41]
    Mao Shan, Stewart Worrall, and Eduardo Mario Nebot. 2011. Long term vehicle motion prediction and tracking in large environments. In 14th International IEEE Conference on Intelligent Transportation Systems, ITSC 2011, Washington, DC, USA, October 5--7, 2011. IEEE, 1978--1983. https://doi.org/10.1109/ITSC.2011.6082922
    [42]
    Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian Sun. 2019. Objects365: A Large-Scale, High-Quality Dataset for Object Detection. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 8429--8438. https://doi.org/10.1109/ICCV.2019.00852
    [43]
    Wenbo Shao, Yanchao Xu, Jun Li, Chen Lv, Weida Wang, and Hong Wang. 2023. How Does Traffic Environment Quantitatively Affect the Autonomous Driving Prediction? CoRR, Vol. abs/2301.04414 (2023). https://doi.org/10.48550/arXiv.2301.04414 showeprint[arXiv]2301.04414
    [44]
    Tao Sun, Jianqiu Xu, and Caiping Hu. 2022. An Efficient Algorithm of Star Subgraph Queries on Urban Traffic Knowledge Graph. Data Sci. Eng., Vol. 7, 4 (2022), 383--401. https://doi.org/10.1007/S41019-022-00198-0
    [45]
    Yichuan Charlie Tang and Ruslan Salakhutdinov. 2019. Multiple Futures Prediction. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8--14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 15398--15408. https://proceedings.neurips.cc/paper/2019/hash/86a1fa88adb5c33bd7a68ac2f9f3f96b-Abstract.html
    [46]
    Kilian Q. Weinberger and Lawrence K. Saul. 2009. Distance Metric Learning for Large Margin Nearest Neighbor Classification. J. Mach. Learn. Res., Vol. 10 (2009), 207--244. https://doi.org/10.5555/1577069.1577078
    [47]
    Ziyang Xiao, Dongxiang Zhang, Zepeng Li, Sai Wu, Kian-Lee Tan, and Gang Chen. 2023. DoveDB: A Declarative and Low-Latency Video Database. Proc. VLDB Endow., Vol. 16, 12 (2023), 3906--3909. https://doi.org/10.14778/3611540.3611582
    [48]
    Yanchao Xu, Wenbo Shao, Jun Li, Kai Yang, Weida Wang, Hua Huang, Chen Lv, and Hong Wang. 2022. SIND: A Drone Dataset at Signalized Intersection in China. In 25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022, Macau, China, October 8--12, 2022. IEEE, 2471--2478. https://doi.org/10.1109/ITSC55140.2022.9921959
    [49]
    Hao Yu, Xi Guo, Xiao Luo, Weihao Bian, and Taohong Zhang. 2023. Construct Trip Graphs by Using Taxi Trajectory Data. Data Sci. Eng., Vol. 8, 1 (2023), 1--22. https://doi.org/10.1007/S41019-023-00205-Y
    [50]
    Dongxiang Zhang, Zhihao Chang, Sai Wu, Ye Yuan, Kian-Lee Tan, and Gang Chen. 2022a. Continuous Trajectory Similarity Search for Online Outlier Detection. IEEE Trans. Knowl. Data Eng., Vol. 34, 10 (2022), 4690--4704. https://doi.org/10.1109/TKDE.2020.3046670
    [51]
    Dongxiang Zhang, Zhihao Chang, Dingyu Yang, Dongsheng Li, Kian-Lee Tan, Ke Chen, and Gang Chen. 2023 a. SQUID: subtrajectory query in trillion-scale GPS database. VLDB J., Vol. 32, 4 (2023), 887--904. https://doi.org/10.1007/S00778-022-00777--7
    [52]
    Dongxiang Zhang, Teng Ma, Junnan Hu, Yijun Bei, Kian-Lee Tan, and Gang Chen. 2023 b. Co-movement Pattern Mining from Videos. CoRR, Vol. abs/2308.05370 (2023). https://doi.org/10.48550/ARXIV.2308.05370 showeprint[arXiv]2308.05370
    [53]
    Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning. In Proceedings of the 2019 International Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 415--432. https://doi.org/10.1145/3299869.3300085
    [54]
    Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang Wang. 2022b. ByteTrack: Multi-object Tracking by Associating Every Detection Box. In Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23--27, 2022, Proceedings, Part XXII (Lecture Notes in Computer Science, Vol. 13682), Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (Eds.). Springer, 1--21. https://doi.org/10.1007/978--3-031--20047--2_1
    [55]
    Tao Zhou, Wenhan Luo, Zhiguo Shi, Jiming Chen, and Qi Ye. 2022. APPTracker: Improving Tracking Multiple Objects in Low-Frame-Rate Videos. In MM '22: The 30th ACM International Conference on Multimedia, Lisboa, Portugal, October 10 - 14, 2022, Jo a o Magalh a es, Alberto Del Bimbo, Shin'ichi Satoh, Nicu Sebe, Xavier Alameda-Pineda, Qin Jin, Vincent Oria, and Laura Toni (Eds.). ACM, 6664--6674. https://doi.org/10.1145/3503161.3548162
    [56]
    Xingyi Zhou, Vladlen Koltun, and Philipp Krahenbühl. 2020. Tracking Objects as Points. In Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part IV (Lecture Notes in Computer Science, Vol. 12349), Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer, 474--490. https://doi.org/10.1007/978--3-030--58548--8_28
    [57]
    Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng Fan, Qinghua Hu, and Haibin Ling. 2022. Detection and Tracking Meet Drones Challenge. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 44, 11 (2022), 7380--7399. https://doi.org/10.1109/TPAMI.2021.3119563

    Index Terms

    1. Predictive and Near-Optimal Sampling for View Materialization in Video Databases

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Proceedings of the ACM on Management of Data
      Proceedings of the ACM on Management of Data  Volume 2, Issue 1
      SIGMOD
      February 2024
      1874 pages
      EISSN:2836-6573
      DOI:10.1145/3654807
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 26 March 2024
      Published in PACMMOD Volume 2, Issue 1

      Permissions

      Request permissions for this article.

      Author Tags

      1. database management system
      2. video analytics

      Qualifiers

      • Research-article

      Funding Sources

      • National Key Research and Development Project of China
      • Key Research Program of Zhejiang Province
      • CCF-Huawei Populus Grove Fund

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 136
        Total Downloads
      • Downloads (Last 12 months)136
      • Downloads (Last 6 weeks)61
      Reflects downloads up to 27 Jul 2024

      Other Metrics

      Citations

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media