Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3641513.3650136acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article
Open access

Context-triggered Games for Reactive Synthesis over Stochastic Systems via Control Barrier Certificates

Published: 14 May 2024 Publication History

Abstract

In this paper, we offer a formal framework to automatically synthesize a hybrid controller for continuous-time nonlinear stochastic control systems while addressing control challenges closely integrated with logical decision-making processes. The primary goal is to enforce complex logic specifications that encompass context switches initiated by either the external environment or the system itself. The proposed game-solving framework adopts a two-layer strategy synthesis approach: (i) in the lower layer, it employs control barrier certificates to synthesize controllers that guarantee reach-while-avoid specifications over complex stochastic systems, and (ii) these controllers are subsequently utilized in a higher logical layer during a game-based logical control synthesis process. This approach enables the utilization of computational capabilities derived from state space control techniques and taps into the problem-solving intelligence inherent in finite games to handle complex logic specifications. We demonstrate the efficacy of our proposed approach over a robotic case study.

References

[1]
A. Abate, M. Prandini, J. Lygeros, and S. Sastry. 2008. Probabilistic Reachability and Safety for Controlled Discrete-Time Stochastic Hybrid Systems. Automatica 44, 11 (2008), 2724–2734.
[2]
A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada. 2019. Control barrier functions: Theory and applications. In Proceedings of the 18th European Control Conference (ECC). 3420–3431.
[3]
A. D Ames, X. Xu, J. W. Grizzle, and P. Tabuada. 2016. Control barrier function based quadratic programs for safety critical systems. IEEE Trans. Automat. Control 62, 8 (2016), 3861–3876.
[4]
M. Anand, V. Murali, A. Trivedi, and M. Zamani. 2022. k-Inductive Barrier Certificates for Stochastic Dynamical Systems. In 25th International Conference on Hybrid Systems: Computation and Control.
[5]
C. Baier and J.-P. Katoen. 2008. Principles of model checking. MIT press.
[6]
C. Belta, B. Yordanov, and E. A. Gol. 2017. Formal methods for discrete-time dynamical systems. Vol. 89. Springer.
[7]
G. De Giacomo and M. Y. Vardi. 2013. Linear temporal logic and linear dynamic logic on finite traces. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence.
[8]
J.L. Doob. 1953. Stochastic Processes. John Wiley & Sons, New York.
[9]
N. Fijalkow, N. Bertrand, P. Bouyer-Decitre, R. Brenguier, A. Carayol, J. Fearnley, H. Gimbert, F. Horn, R. Ibsen-Jensen, N. Markey, B. Monmege, P. Novotný, M. Randour, O. Sankur, S.Schmitz, O. Serre, and M. Skomra. [n. d.]. Games on Graphs.
[10]
T. Gurriet, M. Mote, A. Singletary, P. Nilsson, E. Feron, and A. D. Ames. 2020. A Scalable Safety Critical Control Framework for Nonlinear Systems. IEEE Access 8 (2020).
[11]
E. M. Hahn, A. Hartmanns, H. Hermanns, and J.-P. Katoen. 2013. A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods in System Design 43, 2 (2013), 191–232.
[12]
C. Huang, X. Chen, W. Lin, Z. Yang, and X. Li. 2017. Probabilistic safety verification of stochastic hybrid systems using barrier certificates. ACM Transactions on Embedded Computing Systems (TECS) 16, 5s (2017), 186.
[13]
A. A. Julius and G. J. Pappas. 2009. Approximations of stochastic hybrid systems. IEEE Trans. Automat. Control 54, 6 (2009), 1193–1203.
[14]
I. Karatzas and S. Shreve. 2014. Brownian motion and stochastic calculus. Vol. 113. springer.
[15]
O. Kupferman and M. Y. Vardi. 2001. Model checking of safety properties. Formal Methods in System Design 19, 3 (2001), 291–314.
[16]
A. Lavaei and E. Frazzoli. 2022. Scalable Synthesis of Finite MDPs for Large-Scale Stochastic Switching Systems. In 2022 IEEE 61st Conference on Decision and Control (CDC). 7510–7515.
[17]
A. Lavaei, S. Soudjani, A. Abate, and M. Zamani. 2022. Automated verification and synthesis of stochastic hybrid systems: A survey. Automatica 146 (2022).
[18]
A. Lavaei and M. Zamani. 2019. Compositional verification of large-scale stochastic systems via relaxed small-gain conditions. In 58th Conference on Decision and Control (CDC). 2574–2579.
[19]
A. Lavaei and M. Zamani. 2022. From dissipativity theory to compositional synthesis of large-scale stochastic switched systems. IEEE Trans. Automat. Control 67, 9 (2022), 4422–4437.
[20]
L. Lindemann, G. J. Pappas, and D. V. Dimarogonas. 2022. Reactive and Risk-Aware Control for Signal Temporal Logic. IEEE Trans. Automat. Control 67, 10 (2022).
[21]
R. Majumdar, K. Mallik, A.-K. Schmuck, and S. Soudjani. 2024. Symbolic control for stochastic systems via finite parity games. Nonlinear Analysis: Hybrid Systems 51 (2024), 101430.
[22]
K. Mallik, A. Schmuck, S. Soudjani, and R. Majumdar. 2019. Compositional Synthesis of Finite-State Abstractions. IEEE Trans. Automat. Control 64, 6 (June 2019), 2629–2636.
[23]
S. P. Nayak, L. N. Egidio, M. Della Rossa, A.-K. Schmuck, and R. Jungers. 2023. Context-triggered Abstraction-based Control Design. IEEE Open Journal of Control Systems (2023).
[24]
A. Nejati. 2023. Formal Verification and Control of Stochastic Hybrid Systems: Model-based and Data-driven Techniques. Ph. D. Dissertation. Technische Universität München.
[25]
A. Nejati, S. Soudjani, and M. Zamani. 2021. Compositional Abstraction-based Synthesis for Continuous-Time Stochastic Hybrid Systems. European Journal of Control 57 (2021), 82–94.
[26]
A. Nejati, S. Soudjani, and M. Zamani. 2022. Compositional Construction of Control Barrier Functions for Continuous-Time Stochastic Hybrid Systems. Automatica 145 (2022).
[27]
A. Nejati and M. Zamani. 2020. Compositional construction of finite MDPs for continuous-time stochastic systems: A dissipativity approach. IFAC-PapersOnLine 53, 2 (2020), 1962–1967.
[28]
A. Nejati and M. Zamani. 2022. From dissipativity theory to compositional construction of control barrier certificates. Schloss-Dagstuhl-Leibniz Zentrum für Informatik (2022).
[29]
B. Oksendal. 2013. Stochastic differential equations: An introduction with applications. Springer Science & Business Media.
[30]
A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. Parrilo. 2013. SOSTOOLS version 3.00 sum of squares optimization toolbox for MATLAB. arXiv:1310.4716 (2013).
[31]
P. A. Parrilo. 2003. Semidefinite programming relaxations for semialgebraic problems. Mathematical programming 96, 2 (2003), 293–320.
[32]
A. Pnueli. 1977. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science. 46–57.
[33]
S. Prajna, A. Jadbabaie, and G. J. Pappas. 2007. A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Automat. Control 52, 8 (2007), 1415–1428.
[34]
S. Prajna and A. Rantzer. 2005. Primal–dual tests for safety and reachability. In International Workshop on Hybrid Systems: Computation and Control. 542–556.
[35]
J. F. Sturm. 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization methods and software 11, 1-4 (1999), 625–653.
[36]
P. Tabuada. 2009. Verification and control of hybrid systems: a symbolic approach. Springer Science & Business Media.
[37]
I. Tkachev, A. Mereacre, Joost-Pieter Katoen, and A. Abate. 2013. Quantitative automata-based controller synthesis for non-autonomous stochastic hybrid systems. In Proceedings of the 16th ACM International Conference on Hybrid Systems: Computation and Control. 293–302.
[38]
R. Wisniewski and M. L. Bujorianu. 2017. Stochastic safety analysis of stochastic hybrid systems. In Proceedings of the 56th IEEE Conference on Decision and Control. 2390–2395.
[39]
M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and J. Lygeros. 2014. Symbolic control of stochastic systems via approximately bisimilar finite abstractions. IEEE Trans. Automat. Control 59, 12 (2014), 3135–3150.

Cited By

View all
  • (2024)Multiplicative Barrier Certificates for Probabilistic Safety of Markov Jump SystemsIFAC-PapersOnLine10.1016/j.ifacol.2024.07.42658:11(63-68)Online publication date: 2024

Index Terms

  1. Context-triggered Games for Reactive Synthesis over Stochastic Systems via Control Barrier Certificates

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        HSCC '24: Proceedings of the 27th ACM International Conference on Hybrid Systems: Computation and Control
        May 2024
        307 pages
        ISBN:9798400705229
        DOI:10.1145/3641513
        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 14 May 2024

        Check for updates

        Badges

        Author Tags

        1. Mode-dependent reachability games
        2. control barrier certificates
        3. hybrid controllers.
        4. nonlinear stochastic systems
        5. reach-while-avoid specifications

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Funding Sources

        • DFG

        Conference

        HSCC '24
        Sponsor:
        HSCC '24: Computation and Control
        May 14 - 16, 2024
        Hong Kong SAR, China

        Acceptance Rates

        Overall Acceptance Rate 153 of 373 submissions, 41%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)97
        • Downloads (Last 6 weeks)30
        Reflects downloads up to 16 Oct 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Multiplicative Barrier Certificates for Probabilistic Safety of Markov Jump SystemsIFAC-PapersOnLine10.1016/j.ifacol.2024.07.42658:11(63-68)Online publication date: 2024

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media