Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey

A Survey on Robotic Prosthetics: Neuroprosthetics, Soft Actuators, and Control Strategies

Published: 10 April 2024 Publication History

Abstract

The field of robotics is a quickly evolving feat of technology that accepts contributions from various genres of science. Neuroscience, Physiology, Chemistry, Material science, Computer science, and the wide umbrella of mechatronics have all simultaneously contributed to many innovations in the prosthetic applications of robotics. This review begins with a discussion of the scope of the term robotic prosthetics and discusses the evolving domain of Neuroprosthetics. The discussion is then constrained to focus on various actuation and control strategies for robotic prosthetic limbs. This review discusses various soft robotic actuators such as EAP, SMA, FFA, and so on, and the merits of such actuators over conventional hard robotic actuators. Options in control strategies for robotic prosthetics, that are in various states of research and development, are reviewed. This article concludes the discussion with an analysis regarding the prospective direction in which this field of robotic prosthetics is evolving in terms of actuation, control, and other features relevant to artificial limbs. This article intends to review some of the emerging research and development trends in the field of robotic prosthetics and summarize many tangents that are represented under this broad domain in an approachable manner.

References

[1]
2010. Ocular Disease. Elsevier. DOI:
[2]
2010. Statistical Signal Processing for Neuroscience and Neurotechnology. Elsevier. DOI:
[3]
S I Ao and International Association of Engineers. 2012. International MultiConference of Engineers and Computer Scientists: IMECS 2012: 14-16 March, 2012, The Royal Garden hotel, Kowloon.
[4]
2017. Standards for Prosthetics and Orthotics. World Health Organisation.
[5]
Dayo O. Adewole, Mijail D. Serruya, James P. Harris, Justin C. Burrell, Dmitriy Petrov, H. Isaac Chen, John A. Wolf, and D. Kacy Cullen. 2016. The evolution of neuroprosthetic interfaces. Critical Reviews in Biomedical Engineering 44, 1-02 (2016), 123–152. DOI:
[6]
Darren Alvares, Lech Wieczorek, Burkhard Raguse, Francois Ladouceur, and Nigel H. Lovell. 2013. Development of nanoparticle film-based multi-axial tactile sensors for biomedical applications. Sensors and Actuators A: Physical 196 (2013), 38–47.
[7]
Elon Musk and. 2019. An integrated brain-machine interface platform with thousands of channels. Journal of Medical Internet Research 21, 10 (2019), e16194. DOI:
[8]
Mohsen Annabestani and Mahdi Fardmanesh. 2019. Ionic Electro Active Polymer-Based Soft Actuators and Their Applications in Microfluidic Micropumps, Microvalves, and Micromixers: A Review. arXiv:1904.07149 [physics.app-ph].
[9]
Christian Antfolk, Marco D’alonzo, Birgitta Rosén, Göran Lundborg, Fredrik Sebelius, and Christian Cipriani. 2013. Sensory feedback in upper limb prosthetics. Expert Review of Medical Devices 10, 1 (2013), 45–54.
[10]
Rajesh Arumugam, Vikas Reddy Enti, Liu Bingbing, Wu Xiaojun, Krishnamoorthy Baskaran, Foong Foo Kong, A Senthil Kumar, Kang Dee Meng, and Goh Wai Kit. 2010. DAvinCi: A cloud computing framework for service robots. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation. IEEE. DOI:
[11]
Manfredo Atzori, Arjan Gijsberts, Claudio Castellini, Barbara Caputo, Anne-Gabrielle Mittaz Hager, Simone Elsig, Giorgio Giatsidis, Franco Bassetto, and Henning Müller. 2014. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Scientific Data 1, 1 (2014). DOI:
[12]
Manfredo Atzori and Henning Müller. 2015. Control capabilities of myoelectric robotic prostheses by hand amputees: A scientific research and market overview. Frontiers in Systems Neuroscience 9 (2015). DOI:
[13]
Alejandro F. Azocar, Luke M. Mooney, Levi J. Hargrove, and Elliott J. Rouse. 2018. Design and characterization of an open-source robotic leg prosthesis. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics. IEEE. DOI:
[14]
Jessica Lauren Banks. 2001. Design and Control of an Anthropomorphic Robot Finger with Multi-point Tactile Sensation. Ph. D. Dissertation. Massachusetts Institute of Technology.
[15]
Yoseph Bar-Cohen. WW-EAP and Artificial Muscles. Retrieved October 10, 2011 fromhttps://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-web.htm
[16]
Yoseph Bar-Cohen and Iain A. Anderson. 2019. Electroactive polymer (EAP) actuators—background review. Mechanics of Soft Materials 1, 1 (2019). DOI:
[17]
Y. Bar-Cohen, T. Xue, M. Shahinpoor, J. Simpson, and J. Smith. 1998. Flexible, low-mass robotic arm actuated by electroactive polymers and operated equivalently to human arm and hand. In Proceedings of the Robotics 98. American Society of Civil Engineers. DOI:
[18]
Konstantin D. Bergmeister, Ivan Vujaklija, Silvia Muceli, Agnes Sturma, Laura A. Hruby, Cosima Prahm, Otto Riedl, Stefan Salminger, Krisztina Manzano-Szalai, Martin Aman, Michael-Friedrich Russold, Christian Hofer, Jose Principe, Dario Farina, and Oskar C. Aszmann. 2017. Broadband prosthetic interfaces: Combining nerve transfers and implantable multichannel EMG technology to decode spinal motor neuron activity. Frontiers in Neuroscience 11 (2017). DOI:
[19]
Biomedinova. Biomedinova: May 2012. Retrieved August 29, 2022 fromhttp://biomedinova.blogspot.com/2012_05_01_archive.html
[20]
C. S. Bjornsson, S. J. Oh, Y. A. Al-Kofahi, Y. J. Lim, K. L. Smith, J. N. Turner, S. De, B. Roysam, W. Shain, and S. J. Kim. 2006. Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. Journal of Neural Engineering 3, 3 (2006), 196–207. DOI:
[21]
Robert Bogue. 2009. Exoskeletons and robotic prosthetics: A review of recent developments. Industrial Robot: An International Journal 36, 5 (2009), 421–427. DOI:
[22]
James G. Boyd and Dimitris C. Lagoudas. 1993. <title>Thermomechanical response of shape memory composites</title>. In SPIE Proceedings, Nesbitt W. Hagood and Gareth J. Knowles (Eds.), SPIE. DOI:
[23]
John F. Brugge. 2013. Anatomy and physiology of auditory pathways and cortex. In Proceedings of the Disorders of Peripheral and Central Auditory Processing. Elsevier, 25–59. DOI:
[24]
Vito Cacucciolo, Hiroyuki Nabae, Koichi Suzumori, and Herbert Shea. 2020. Electrically-driven soft fluidic actuators combining stretchable pumps with thin McKibben muscles. Frontiers in Robotics and AI 6 (2020). DOI:
[25]
Vito Cacucciolo, Jun Shintake, Yu Kuwajima, Shingo Maeda, Dario Floreano, and Herbert Shea. 2019. Stretchable pumps for soft machines. Nature 572, 7770 (2019), 516–519. DOI:
[26]
Darwin G. Caldwell and Clarence Gosney. 1993. Enhanced tactile feedback (tele-taction) using a multi-functional sensory system. In Proceedings IEEE International Conference on Robotics and Automation. IEEE, 955–960.
[27]
Andrej Kral, Felix Aplin, and Hannes Maier. 2021. Future directions. In Prostheses for the Brain. Elsevier, 353–386.
[28]
Longfei Chang, Hualing Chen, Zicai Zhu, and Bo Li. 2012. Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite. Smart Materials and Structures 21, 6 (2012), 065018. DOI:
[29]
Won Hyuk Chang and Yun-Hee Kim. 2013. Robot-assisted therapy in stroke rehabilitation. Journal of Stroke 15, 3 (2013), 174. DOI:
[30]
Jennifer Cheesborough, Lauren Smith, Todd Kuiken, and Gregory Dumanian. 2015. Targeted muscle reinnervation and advanced prosthetic arms. Seminars in Plastic Surgery 29, 01 (2015), 062–072. DOI:
[31]
Younguk Cho, Sanghoon Park, Juyoung Lee, and Ki Jun Yu. 2021. Emerging materials and technologies with applications in flexible neural implants: A comprehensive review of current issues with neural devices. Advanced Materials 33, 47 (2021), 2005786. DOI:
[32]
S. B. Choi and J. Goldasz. 2018. Controllable actuators utilizing smart MR materials and ER suspensions. In Proceedings of the ACTUATOR 2018; 16th International Conference on New Actuators. 1–9.
[33]
Alex Chortos, Jia Liu, and Zhenan Bao. 2016. Pursuing prosthetic electronic skin. Nature Materials 15, 9 (2016), 937–950. DOI:
[34]
C.K. Chung, P.K. Fung, Y.Z. Hong, M.S. Ju, C.C.K. Lin, and T.C. Wu. 2006. A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sensors and Actuators B: Chemical 117, 2 (2006), 367–375. DOI:
[35]
Matteo Cianchetti, Cecilia Laschi, Arianna Menciassi, and Paolo Dario. 2018. Biomedical applications of soft robotics. Nature Reviews Materials 3, 6 (2018), 143–153. DOI:
[36]
J. Citerin and A. Kheddar. 2004. Characterization of a new interpenetrated network conductive polymer- (IPN-CP) and new designs for a otential linear actuator that works in air. In Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation.IEEE. DOI:
[37]
Frank W. Clippinger. 1974. A sensory feedback system for an upper limb amputation prosthesis. Bull. Pros. Res. 10 (1974), 247–258.
[38]
Tyler R. Clites, Matthew J. Carty, Jessica B. Ullauri, Matthew E. Carney, Luke M. Mooney, Jean-François Duval, Shriya S. Srinivasan, and Hugh. M. Herr. 2018. Proprioception from a neurally controlled lower-extremity prosthesis. Science Translational Medicine 10, 443 (2018). DOI:
[39]
Matteo Cognolato, Manfredo Atzori, Roger Gassert, and Henning Müller. 2022. Improving robotic hand prosthesis control with eye tracking and computer vision: A multimodal approach based on the visuomotor behavior of grasping. Frontiers in Artificial Intelligence 4 (2022). DOI:
[40]
Simona Crea, Benoni B. Edin, Kristel Knaepen, Romain Meeusen, and Nicola Vitiello. 2016. Time-discrete vibrotactile feedback contributes to improved gait symmetry in patients with lower limb amputations: Case series. Physical Therapy 97, 2 (2016), 198–207. DOI:
[41]
José Cláudio da Silva Junior and Walter Germanovix. 2019. Development of a sip-and-puff interface for communication and control of devices. In IFMBE Proceedings. Springer International Publishing, 1137–1146. DOI:
[42]
Gislin Dagnelie. 2008. Psychophysical evaluation for visual prosthesis. Annual Review of Biomedical Engineering 10, 1 (2008), 339–368. DOI:
[43]
Ravinder Dahiya, Nivasan Yogeswaran, Fengyuan Liu, Libu Manjakkal, Etienne Burdet, Vincent Hayward, and Henrik Jorntell. 2019. Large-area soft e-skin: The challenges beyond sensor designs. Proc. IEEE 107, 10 (2019), 2016–2033. DOI:
[44]
J. Dargahi. 2000. A piezoelectric tactile sensor with three sensing elements for robotic, endoscopic and prosthetic applications. Sensors and Actuators A: Physical 80, 1 (2000), 23–30. DOI:
[45]
Artem Dementyev and Joseph A. Paradiso. 2014. WristFlex. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology. ACM. DOI:
[46]
Deirdre M. Desmond and Malcolm MacLachlan. 2010. Prevalence and characteristics of phantom limb pain and residual limb pain in the long term after upper limb amputation. International Journal of Rehabilitation Research 33, 3 (2010), 279–282. DOI:
[47]
Mata Amritanandamayi Devi, Ganesha Udupa, and Pramod Sreedharan. 2018. A novel underactuated multi-fingered soft robotic hand for prosthetic application. Robotics and Autonomous Systems 100 (2018), 267–277. DOI:
[48]
Caroline Dietrich, Sandra Nehrdich, Sandra Seifert, Kathrin R. Blume, Wolfgang H. R. Miltner, Gunther O. Hofmann, and Thomas Weiss. 2018. Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases functionality. Frontiers in Neurology 9 (2018). DOI:
[49]
Yuqing Dong, Ka-Wai Yeung, Chak-Yin Tang, Wing-Cheung Law, Gary Chi-Pong Tsui, and Xiaolin Xie. 2021. Development of ionic liquid-based electroactive polymer composites using nanotechnology. Nanotechnology Reviews 10, 1 (2021), 99–116. DOI:
[50]
Alberto Esquenazi, Mukul Talaty, Andrew Packel, and Michael Saulino. 2012. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine & Rehabilitation 91, 11 (2012), 911–921. DOI:
[51]
Cordis Europa. CORDIS | European Commission. Retrieved August 29, 2022 fromhttps://cordis.europa.eu/project/id/679820
[52]
H. Fares, L. Seminara, L. Pinna, M. Valle, J. Groten, M. Hammer, M. Zirkl, and B. Stadlober. 2018. Screen printed tactile sensing arrays for prosthetic applications. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems. IEEE. DOI:
[53]
Mohsen Farvardin, Mehrdad Afarid, Adel Attarzadeh, Mohammad K. Johari, Morsal Mehryar, M. Hossein Nowroozzadeh, Feisal Rahat, Hossein Peyvandi, Reza Farvardin, and Mohammad Nami. 2018. The argus-II retinal prosthesis implantation; from the global to local successful experience. Frontiers in Neuroscience 12 (2018). DOI:
[54]
Frank Filisko. 2002. Electrorheological Materials. DOI:
[55]
Seth G. Fitzgerald, Gary W. Delaney, and David Howard. 2020. A review of jamming actuation in soft robotics. Actuators 9, 4 (2020), 104. DOI:
[56]
Herta Flor, Claudia Denke, Michael Schaefer, and Sabine Grüsser. 2001. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. The Lancet 357, 9270 (2001), 1763–1764.
[57]
C. Freschi, V. Ferrari, F. Melfi, M. Ferrari, F. Mosca, and A. Cuschieri. 2012. Technical review of the da Vinci surgical telemanipulator. The International Journal of Medical Robotics and Computer Assisted Surgery 9, 4 (2012), 396–406. DOI:
[58]
Jorge Garza-Ulloa. 2018. Introduction to biomechatronics/biomedical engineering. In Proceedings of the Applied Biomechatronics using Mathematical Models. Elsevier, 1–51. DOI:
[59]
B. L. Gery and Susan N. Gottschlich. 1994. A tactile sensing system for dexterous manipulation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 1384–1390.
[60]
Agnès Ghorbel, Nader Ben Amor, and Mohamed Jallouli. 2019. A survey on different human-machine interactions used for controlling an electric wheelchair. Procedia Computer Science 159 (2019), 398–407. DOI:
[61]
Michael Goldfarb, Brian E. Lawson, and Amanda H. Shultz. 2013. Realizing the promise of robotic leg prostheses. Science Translational Medicine 5, 210 (2013). DOI:
[62]
Larry Greenemeier. 2013. FDA approves first retinal implant. Nature (2013). DOI:
[63]
Harkishan Singh Grewal, Aaron Matthews, Richard Tea, Ved Contractor, and Kiran George. 2018. Sip-and-puff autonomous wheelchair for individuals with severe disabilities. In Proceedings of the 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference. IEEE. DOI:
[64]
Stefan Grushko, Tomáš Spurný, and Martin Černý. 2020. Control methods for transradial prostheses based on remnant muscle activity and its relationship with proprioceptive feedback. Sensors 20, 17 (2020), 4883. DOI:
[65]
Guoying Gu, Ningbin Zhang, Chen Chen, Haipeng Xu, and Xiangyang Zhu. 2023. Soft robotics enables neuroprosthetic hand design. ACS Nano 17, 11 (2023), 9661–9672. DOI:
[66]
Guoying Gu, Ningbin Zhang, Haipeng Xu, Shaoting Lin, Yang Yu, Guohong Chai, Lisen Ge, Houle Yang, Qiwen Shao, Xinjun Sheng, Xiangyang Zhu, and Xuanhe Zhao. 2023. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat. Biomed. Eng. 7, 4 (April 2023), 589–598.
[67]
Vincenzo Guarino, Simona Zuppolini, Anna Borriello, and Luigi Ambrosio. 2016. Electro-active polymers (EAPs): A promising route to design bio-organic/bioinspired platforms with on demand functionalities. Polymers 8, 5 (2016), 185. DOI:
[68]
Weichao Guo, Xinjun Sheng, Honghai Liu, and Xiangyang Zhu. 2017. Mechanomyography assisted myoeletric sensing for upper-extremity prostheses: A hybrid approach. IEEE Sensors Journal 17, 10 (2017), 3100–3108. DOI:
[69]
Leigh R. Hochberg, Mijail D. Serruya, Gerhard M. Friehs, Jon A. Mukand, Maryam Saleh, Abraham H. Caplan, Almut Branner, David Chen, Richard D. Penn, and John P. Donoghue. 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 7099 (2006), 164–171. DOI:
[70]
Kathryn Hopkins. 2015. Deafness in cochlear and auditory nerve disorders. In Proceedings of the Human Auditory System - Fundamental Organization and Clinical Disorders. Elsevier, 479–494. DOI:
[71]
Jong Hu. 2014. Investigation on the cyclic response of superelastic shape memory alloy (SMA) slit damper devices simulated by quasi-static finite element (FE) analyses. Materials 7, 2 (2014), 1122–1141. DOI:
[72]
Dana Hughes and Nikolaus Correll. 2015. Texture recognition and localization in amorphous robotic skin. Bioinspiration & Biomimetics 10, 5 (2015), 055002. DOI:
[73]
Mark S. Humayun, Rohit R. Lakhanpal, and James D. Weiland. 2006. Artificial vision. In Proceedings of the Retina. Elsevier, 2615–2632. DOI:
[74]
Luke Hurst. 2023. This “groundbreaking” bionic arm fuses with the user’s bone and nerves — euronews.com. Retrieved October 22, 2023 from https://www.euronews.com/next/2023/10/11/groundbreaking-bionic-arm-that-fuses-with-users-skeleton-and-nerves-could-advance-amputee-
[75]
Sahel Mohammad Iqbal and Subhankar Mishra. 2023. Neural networks at a fraction with pruned quaternions. In Proceedings of the 6th Joint International Conference on Data Science and Management of Data. 19–27.
[76]
K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei. 2004. Functional near-infrared neuroimaging. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. DOI:
[77]
N. Jarrasse, M. Maestrutti, G. Morel, and A. Roby-Brami. 2015. Robotic prosthetics : Moving beyond technical performance. IEEE Technology and Society Magazine 34, 2 (2015), 71–79. DOI:
[78]
V. Olazabal J.M.Sansano. Polypyrrole and a Solid Polymer Electrolyte. Retrieved October 11, 2022 fromhttps://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/Polypyrrole-PrepProcedure.htm
[79]
Andrew Jo, Clémence Huet, and Hani E. Naguib. 2020. Template-assisted self-assembly of conductive polymer electrodes for ionic electroactive polymers. Frontiers in Bioengineering and Biotechnology 8 (2020). DOI:
[80]
Daniel Johansen, Christian Cipriani, Dejan B. Popovic, and Lotte N. S. A. Struijk. 2016. Control of a robotic hand using a tongue control system—a prosthesis application. IEEE Transactions on Biomedical Engineering 63, 7 (2016), 1368–1376.
[81]
Roland S. Johansson and G. Westling. 1987. Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Experimental Brain Research 66 (1987), 141–154.
[82]
Lynette Jones. 1997. Dextrous hands: Human, prosthetic, and robotic. Presence: Teleoperators and Virtual Environments 6, 1 (1997), 29–56. DOI:
[83]
Mohsen Kaboli and Gordon Cheng. 2018. Robust tactile descriptors for discriminating objects from textural properties via artificial robotic skin. IEEE Transactions on Robotics 34, 4 (2018), 985–1003. DOI:
[84]
Martin Kaltenbrunner, Tsuyoshi Sekitani, Jonathan Reeder, Tomoyuki Yokota, Kazunori Kuribara, Takeyoshi Tokuhara, Michael Drack, Reinhard Schwödiauer, Ingrid Graz, Simona Bauer-Gogonea, Siegfried Bauer, and Takao Someya. 2013. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 7459 (2013), 458–463. DOI:
[85]
Prakash Karipoth, Adamos Christou, Abhilash Pullanchiyodan, and Ravinder Dahiya. 2021. Bioinspired inchworm- and earthworm-like soft robots with intrinsic strain sensing. Advanced Intelligent Systems 4, 2 (2021), 2100092. DOI:
[86]
J. Katona, I. Farkas, T. Ujbanyi, P. Dukan, and A. Kovari. 2014. Evaluation of the NeuroSky MindFlex EEG headset brain waves data. In Proceedings of the 2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics. IEEE. DOI:
[87]
Wolfgang Kemmetmüller and Andreas Kugi. 2004. Modeling and control of an electrorheological actuator. IFAC Proceedings Volumes 37, 14 (2004), 265–270. DOI:
[88]
P R. Kennedy and R A. E. Bakay. 1998. Restoration of neural output from a paralyzed patient by a direct brain connection. NeuroReport 9, 8 (1998), 1707–1711.
[89]
Jeonghee Kim, Hangue Park, Joy Bruce, Erica Sutton, Diane Rowles, Deborah Pucci, Jaimee Holbrook, Julia Minocha, Beatrice Nardone, Dennis West, Anne Laumann, Eliot Roth, Mike Jones, Emir Veledar, and Maysam Ghovanloo. 2013. The tongue enables computer and wheelchair control for people with spinal cord injury. Science Translational Medicine 5, 213 (2013).
[90]
Jeonghee Kim, Hangue Park, Joy Bruce, Erica Sutton, Diane Rowles, Deborah Pucci, Jaimee Holbrook, Julia Minocha, Beatrice Nardone, Dennis West, Anne Laumann, Eliot Roth, Mike Jones, Emir Veledar, and Maysam Ghovanloo. 2013. The tongue enables computer and wheelchair control for people with spinal cord injury. Science Translational Medicine 5, 213 (2013).
[91]
YUTAKA KONDOH and SHINICHI YOKOTA. 1999. Actuators making use of electro-rheological fluids: movable electrode type ER actuators. Journal of Intelligent Material Systems and Structures 10, 9 (1999), 718–722. DOI:
[92]
Fanpeng Kong, Md. Nazmus Sahadat, Maysam Ghovanloo, and Gregory D. Durgin. 2019. A stand-alone intraoral tongue-controlled computer interface for people with tetraplegia. IEEE Transactions on Biomedical Circuits and Systems 13, 5 (2019), 848–857. DOI:
[93]
Andrej Kral, Felix Aplin, and Hannes Maier. 2021. Future directions. In Proceedings of the Prostheses for the Brain. Elsevier, 353–386. DOI:
[94]
Andrej Kral, Felix Aplin, and Hannes Maier. 2021. Prostheses for the Brain.
[95]
Todd A. Kuiken. 2009. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301, 6 (2009), 619. DOI:
[96]
T. A. Kuiken, G. A. Dumanian, R. D. Lipschutz, L. A. Miller, and K. A. Stubblefield. 2004. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics & Orthotics International 28, 3 (2004), 245–253. DOI:
[97]
Todd A. Kuiken, Laura A. Miller, Robert D. Lipschutz, Blair A. Lock, Kathy Stubblefield, Paul D. Marasco, Ping Zhou, and Gregory A. Dumanian. 2007. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study. The Lancet 369, 9559 (2007), 371–380. DOI:
[98]
Shunichi Kurumaya, Hiroyuki Nabae, Gen Endo, and Koichi Suzumori. 2017. Design of thin McKibben muscle and multifilament structure. Sensors and Actuators A: Physical 261 (2017), 66–74.
[99]
Roberta Kwok. 2013. Neuroprosthetics: Once more, with feeling. Nature 497, 7448 (2013), 176–178. DOI:
[100]
Creative Machine Lab. Jamming Gripper - Creative Machines Lab - Columbia University. Retrieved October 15, 2022 fromhttp://www.creativemachineslab.com/jamming-gripper.html
[101]
Brian E. Lawson, Jason Mitchell, Don Truex, Amanda Shultz, Elissa Ledoux, and Michael Goldfarb. 2014. A robotic leg prosthesis: Design, control, and implementation. IEEE Robotics & Automation Magazine 21, 4 (2014), 70–81. DOI:
[102]
Andreas Lendlein (Ed.). 2010. Shape-Memory Polymers. Springer Berlin. DOI:
[103]
Eric C. Leuthardt, Gerwin Schalk, Jarod Roland, Adam Rouse, and Daniel W. Moran. 2009. Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurgical Focus 27, 1 (2009), E4. DOI:
[104]
Shuguang Li, Daniel M. Vogt, Daniela Rus, and Robert J. Wood. 2017. Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sciences 114, 50 (2017), 13132–13137. DOI:
[105]
Weiye Li. 2022. Management of age-related macular degeneration. In Proceedings of the Age-Related Macular Degeneration. Elsevier, 217–231. DOI:
[106]
Yingtian Li, Yonghua Chen, Yang Yang, and Ying Wei. 2017. Passive particle jamming and its stiffening of soft robotic grippers. IEEE Transactions on Robotics 33, 2 (2017), 446–455. DOI:
[107]
Fengyuan Liu, Sweety Deswal, Adamos Christou, Yulia Sandamirskaya, Mohsen Kaboli, and Ravinder Dahiya. 2022. Neuro-inspired electronic skin for robots. Science Robotics 7, 67 (2022). DOI:
[108]
Fengyuan Liu, Sweety Deswal, Adamos Christou, Yulia Sandamirskaya, Mohsen Kaboli, and Ravinder Dahiya. 2022. Neuro-inspired electronic skin for robots. Science Robotics 7, 67 (2022). DOI:
[109]
Sheng Liu, Wenjuan Liu, Yang Liu, Jun-Hong Lin, Xin Zhou, Michael J. Janik, Ralph H. Colby, and Qiming Zhang. 2010. Influence of imidazolium-based ionic liquids on the performance of ionic polymer conductor network composite actuators. Polymer International 59, 3 (2010), 321–328. DOI:
[110]
Gerald E. Loeb, Raymond A. Peck, William H. Moore, and Kevin Hood. 2001. BION™ system for distributed neural prosthetic interfaces. Medical Engineering & Physics 23, 1 (2001), 9–18. DOI:
[111]
Antonio Lopez-Diaz, Ana Martin-Pacheco, Alicia Naranjo, Cristina Martin, M. Antonia Herrero, Ester Vazquez, and Andres S. Vazquez. 2020. Autonomous self-healing pneumatic McKibben muscle based on a new hydrogel material. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics. IEEE. DOI:
[112]
Carlo J. De Luca. 2002. Surface Electromyography: Detection and Recording. Neuro-Muscular Research Center, Boston University.
[113]
Arjun Hari M and Lintu Rajan. 2021. Advanced materials and technologies for touch sensing in prosthetic limbs. IEEE Transactions on NanoBioscience 20, 3 (2021), 256–270.
[114]
Frederikke B. Madsen, Anders E. Daugaard, Søren Hvilsted, and Anne L. Skov. 2016. The current state of silicone-based dielectric elastomer transducers. Macromolecular Rapid Communications 37, 5 (2016), 378–413. DOI:
[115]
Paul D. Marasco, Keehoon Kim, James Edward Colgate, Michael A. Peshkin, and Todd A. Kuiken. 2011. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134, 3 (2011), 747–758.
[116]
Alex Mazursky, Jeong-Hoi Koo, and Tae-Heon Yang. 2019. Design, modeling, and evaluation of a slim haptic actuator based on electrorheological fluid. Journal of Intelligent Material Systems and Structures 30, 17 (2019), 2521–2533. DOI: arXiv:https://doi.org/10.1177/1045389X19836172
[117]
Alex Mazursky, Jeong-Hoi Koo, and Tae-Heon Yang. 2020. A compact and compliant electrorheological actuator for generating a wide range of haptic sensations. Smart Materials and Structures 29, 5 (2020), 055028. DOI:
[118]
John T. McElveen, Calhoun D. Cunningham, and James L. Sheehy. 2010. Ossicular reconstruction. In Proceedings of the Otologic Surgery. Elsevier, 161–171. DOI:
[119]
Dennis J. McFarland, Dean J. Krusienski, William A. Sarnacki, and Jonathan R. Wolpaw. 2008. Emulation of computer mouse control with a noninvasive brain–computer interface. Journal of Neural Engineering 5, 2 (2008), 101–110. DOI:
[120]
Dennis J. McFarland, William A. Sarnacki, and Jonathan R. Wolpaw. 2010. Electroencephalographic (EEG) control of three-dimensional movement. Journal of Neural Engineering 7, 3 (2010), 036007. DOI:
[121]
Dennis J. McFarland and Jonathan R. Wolpaw. 2008. Brain-computer interface operation of robotic and prosthetic devices. Computer 41, 10 (2008), 52–56. DOI:
[122]
Muhammad Ali Memon and Joseph F. Rizzo. 2010. Visual prostheses and other assistive devices. In Proceedings of the Ocular Disease. Elsevier, 590–598. DOI:
[123]
Vincent Mendez, Francesco Iberite, Solaiman Shokur, and Silvestro Micera. 2021. Current solutions and future trends for robotic prosthetic hands. Annual Review of Control, Robotics, and Autonomous Systems 4, 1 (2021), 595–627. DOI:
[124]
Marvin Minsky. 1980. Telepresence. Omni (1980), 45–51.
[125]
Seyed M. Mirvakili, Douglas Sim, Ian W. Hunter, and Robert Langer. 2020. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Science Robotics 5, 41 (2020). DOI:
[126]
David A. Moses, Sean L. Metzger, Jessie R. Liu, Gopala K. Anumanchipalli, Joseph G. Makin, Pengfei F. Sun, Josh Chartier, Maximilian E. Dougherty, Patricia M. Liu, Gary M. Abrams, Adelyn Tu-Chan, Karunesh Ganguly, and Edward F. Chang. 2021. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. New England Journal of Medicine 385, 3 (2021), 217–227. DOI:
[127]
Silvia Muceli, Konstantin D. Bergmeister, Klaus-Peter Hoffmann, Martin Aman, Ivan Vukajlija, Oskar C. Aszmann, and Dario Farina. 2018. Decoding motor neuron activity from epimysial thin-film electrode recordings following targeted muscle reinnervation. Journal of Neural Engineering 16, 1 (2018), 016010. DOI:
[128]
MURATA. Principles of Piezoelectric Actuators | Actuator | Murata Manufacturing Co., Ltd.Retrieved August 28, 2022 fromhttps://www.murata.com/en-global/products/mechatronics/actuator/overview/basic
[129]
William Taube Navarai, Oliver Ozioko, and Ravinder Dahiya. 2018. Capacitive-piezoelectric tandem architecture for biomimetic tactile sensing in prosthetic hand. In Proceedings of the 2018 IEEE SENSORS. IEEE. DOI:
[130]
William Navaraj and Ravinder Dahiya. 2019. Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli. Advanced Intelligent Systems 1, 7 (2019), 1900051. DOI:
[131]
William Navaraj and Ravinder Dahiya. 2019. Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli. Advanced Intelligent Systems 1, 7 (2019). DOI:
[132]
William Taube Navaraj, Habib Nassar, and Ravinder Dahiya. 2019. Prosthetic hand with biomimetic tactile sensing and force feedback. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems. IEEE. DOI:
[133]
Neuralink. Approach - Neuralink. Retrieved August 29, 2022 fromhttps://neuralink.com/approach/
[134]
Bao Tram Nghiem, Ian C. Sando, R. Brent Gillespie, Bryan L. McLaughlin, Gregory J. Gerling, Nicholas B. Langhals, Melanie G. Urbanchek, and Paul S. Cederna. 2015. Providing a sense of touch to prosthetic hands. Plastic and reconstructive surgery 135, 6 (2015), 1652–1663.
[135]
NIDCD-NIH. Hearing Aids Styles/Types & How They Work | NIDCD. Retrieved August 28, 2022 fromhttps://www.nidcd.nih.gov/health/hearing-aids
[136]
NIDCD-NIH. Hearing Aids Styles/Types & How They Work | NIDCD. Retrieved August 28, 2022 fromhttps://www.nidcd.nih.gov/health/hearing-aids
[137]
Christian Nissler, Nikoleta Mouriki, and Claudio Castellini. 2016. Optical myography: Detecting finger movements by looking at the forearm. Frontiers in Neurorobotics 10 (2016). DOI:
[138]
Beytullah Okur, Erkan Zergeroglu, and Enver Tatlicioglu. 2015. Nonlinear control of tendon driven robot manipulators: Elimination of actuator side position measurements. In Proceedings of the 2015 54th IEEE Conference on Decision and Control. IEEE. DOI:
[139]
Nicholas Opie. 2021. The StentrodeTM neural interface system. In Proceedings of the SpringerBriefs in Electrical and Computer Engineering. Springer International Publishing, 127–132. DOI:
[140]
Dorina M. Opris. 2017. Polar elastomers as novel materials for electromechanical actuator applications. Advanced Materials 30, 5 (2017), 1703678. DOI:
[141]
Ossur. Ossur. Life Without Limitations.Retrieved August 29, 2022 fromhttps://www.ossur.com/en-in/prosthetics/arms/i-limb-ultra
[142]
Thomas J. Oxley, Nicholas L. Opie, Sam E. John, Gil S. Rind, Stephen M. Ronayne, Tracey L. Wheeler, Jack W. Judy, Alan J. McDonald, Anthony Dornom, Timothy J. H. Lovell, Christopher Steward, David J. Garrett, Bradford A. Moffat, Elaine H. Lui, Nawaf Yassi, Bruce C. V. Campbell, Yan T. Wong, Kate E. Fox, Ewan S. Nurse, Iwan E. Bennett, Sébastien H. Bauquier, Kishan A. Liyanage, Nicole R. van der Nagel, Piero Perucca, Arman Ahnood, Katherine P. Gill, Bernard Yan, Leonid Churilov, Christopher R. French, Patricia M. Desmond, Malcolm K. Horne, Lynette Kiers, Steven Prawer, Stephen M. Davis, Anthony N. Burkitt, Peter J. Mitchell, David B. Grayden, Clive N. May, and Terence J. O’Brien. 2016. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nature Biotechnology 34, 3 (2016), 320–327. DOI:
[143]
Hangue Park and Maysam Ghovanloo. 2014. An arch-shaped intraoral tongue drive system with built-in tongue-computer interfacing SoC. Sensors 14, 11 (2014), 21565–21587. DOI:
[144]
Hangue Park, M. Kiani, Hyung-Min Lee, Jeonghee Kim, J. Block, B. Gosselin, and M. Ghovanloo. 2012. A wireless magnetoresistive sensing system for an intraoral tongue-computer interface. IEEE Transactions on Biomedical Circuits and Systems 6, 6 (2012), 571–585. DOI:
[145]
Hyung-Bin Park, Dong-Ryul Kim, Hyung-Jung Kim, Wei Wang, Min-Woo Han, and Sung-Hoon Ahn. 2019. Design and analysis of artificial muscle robotic elbow joint using shape memory alloy actuator. International Journal of Precision Engineering and Manufacturing 21, 2 (2019), 249–256.
[146]
Gert Pfurtscheller, Gernot R. Müller, Jörg Pfurtscheller, Hans Jürgen Gerner, and Rüdiger Rupp. 2003. “Thought” – control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience Letters 351, 1 (2003), 33–36. DOI:
[147]
PMC. Human cortical prostheses: Lost in translation? - PMC. Retrieved August 29, 2022 fromhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614414/
[148]
PMC. Visual Prostheses: The Enabling Technology to Give Sight to the Blind - PMC. Retrieved October 17, 2022 fromhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329712/
[149]
Devin Powell. 2013. Toy helicopter guided by power of thought. Nature (2013). DOI:
[150]
Alok Prakash, Neeraj Sharma, Anurag Kumar Katiyar, Satya Kesh Dubey, and Shiru Sharma. 2022. Magnetic-based detection of muscular contraction for controlling hand prosthesis. Sensors and Actuators A: Physical 344 (2022), 113709. DOI:
[151]
Joanne Pransky. 1997. ROBODOC - Surgical robot success story. Industrial Robot: An International Journal 24, 3 (1997), 231–233.
[152]
Uwe Proske and Simon C. Gandevia. 2012. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews 92, 4 (2012), 1651–1697. DOI:
[153]
C. Pylatiuk, A. Kargov, I. Gaiser, T. Werner, S. Schulz, and G. Bretthauer. 2009. Design of a flexible fluidic actuation system for a hybrid elbow orthosis. In Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics. IEEE. DOI:
[154]
Soonjae Pyo, Jaeyong Lee, Kyubin Bae, Sangjun Sim, and Jongbaeg Kim. 2021. Recent progress in flexible tactile sensors for human-interactive systems: From sensors to advanced applications. Advanced Materials 33, 47 (2021). DOI:
[155]
Tian Qiu, William R. Hamel, and Dongjun Lee. 2014. Design and control of a low cost 6 dof master controller. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation. IEEE, 5313–5318.
[156]
Md Hafizur Rahman, Harmony Werth, Alexander Goldman, Yuki Hida, Court Diesner, Logan Lane, and Pradeep L. Menezes. 2021. Recent progress on electroactive polymers: Synthesis, properties and applications. Ceramics 4, 3 (2021), 516–541. DOI:
[157]
V. Ramachandran. 1998. The perception of phantom limbs. The D. O. Hebb lecture. Brain 121, 9 (1998), 1603–1630. DOI:
[158]
Joseph F. Rizzo, John Wyatt, John Loewenstein, Shawn Kelly, and Doug Shire. 2003. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Investigative Opthalmology & Visual Science 44, 12 (2003), 5362. DOI:
[159]
Shadow Robot. Shadow Dexterous Hand Series - Research and Development Tool. Retrieved October 11, 2022 fromhttps://www.shadowrobot.com/dexterous-hand-series/
[160]
Aidan D. Roche, Hubertus Rehbaum, Dario Farina, and Oskar C. Aszmann. 2014. Prosthetic myoelectric control strategies: A clinical perspective. Current Surgery Reports 2, 3 (2014). DOI:
[161]
Maurizio Rossi, Matteo Nardello, Leandro Lorenzelli, and Davide Brunelli. 2017. Dual mode pressure sensing for prosthetic interfaces. In Proceedings of the 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces. IEEE.
[162]
David Rusaw, Kerstin Hagberg, Lee Nolan, and Nerrolyn Ramstrand. 2012. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss? The Journal of Rehabilitation Research and Development 49, 8 (2012), 1239. DOI:
[163]
Scott M. Russell. 2001. SMST-2000: Proceedings of the International Conference on Shape Memory and Superelastic Technologies. ASM International.
[164]
Hannes P. Saal and Sliman J. Bensmaia. 2015. Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia 79 (2015), 344–353.
[165]
Moustafa Saleh, Yahya Abbass, Ali Ibrahim, and Maurizio Valle. 2019. Experimental assessment of the interface electronic system for PVDF-based piezoelectric tactile sensors. Sensors 19, 20 (2019), 4437. DOI:
[166]
R.S. Sanders and M.T. Lee. 1996. Implantable pacemakers. Proc. IEEE 84, 3 (1996), 480–486. DOI:
[167]
Loredana Santo, Fabrizio Quadrini, Antonio Accettura, and Walter Villadei. 2014. Shape memory composites for self-deployable structures in aerospace applications. Procedia Engineering 88 (2014), 42–47. DOI:
[168]
Christopher D. Saudek, Jean-Louis Selam, Henry A. Pitt, Kenneth Waxman, Michelle Rubio, Nathalie Jeandidier, Dee Turner, Robert E. Fischell, and M. Arthur Charles. 1989. A preliminary trial of the programmable implantable medication system for insulin delivery. New England Journal of Medicine 321, 9 (1989), 574–579. DOI:
[169]
Giacomo Selleri, Maria Elena Gino, Tommaso Maria Brugo, Riccardo D'Anniballe, Johnnidel Tabucol, Maria Letizia Focarete, Raffaella Carloni, Davide Fabiani, and Andrea Zucchelli. 2022. Self-sensing composite material based on piezoelectric nanofibers. Materials & Design 219 (2022), 110787. DOI:
[170]
K. Otsuka and C. M. Wayman. 1998. Mechanism of shape memory effect and superelasticity. Shape Memory Materials (1998), 27–48.
[171]
Alex S. Shafer and Mehrdad R. Kermani. 2009. On the feasibility and suitability of MR and ER based actuators in human friendly manipulators. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2904–2909. DOI:
[172]
R.V. Shannon. 2008. Cochlear implants. In Proceedings of the Senses: A Comprehensive Reference. Elsevier, 469–474. DOI:
[173]
P. Shenoy, K.J. Miller, B. Crawford, and R.P.N. Rao. 2008. Online electromyographic control of a robotic prosthesis. IEEE Transactions on Biomedical Engineering 55, 3 (2008), 1128–1135. DOI:
[174]
R.K. Shepherd, J.B. Fallon, and H.J. McDermott. 2014. Medical bionics. In Proceedings of the Comprehensive Biomedical Physics. Elsevier, 327–341. DOI:
[175]
Robert K. Shepherd and Douglas B. McCreery. 2006. Basis of electrical stimulation of the cochlea and the cochlear nucleus. In Proceedings of the Cochlear and Brainstem Implants. KARGER, 186–205. DOI:
[176]
Emily Singer. Tongue Control — technologyreview.com. Retrieved September 14, 2022 from https://www.technologyreview.com/2008/11/24/217576/tongue-control-2/
[177]
Anna P. Skinner, Philip Cox, and Justin J. Hill. 2021. Dense carbon nanotube array-ionic electroactive polymer composite actuators. In Proceedings of the Electroactive Polymer Actuators and Devices (EAPAD) XXIII.John D. Madden, Iain A. Anderson, and Herbert R. Shea (Eds.), SPIE. DOI:
[178]
Sophon Somlor, Richard Sahala Hartanto, Alexander Schmitz, and Shigeki Sugano. 2015. A novel tri-axial capacitive-type skin sensor. Advanced Robotics 29, 21 (2015), 1375–1391.
[179]
K. Otsuka and C. M. Wayman. 1998. Mechanism of shape memory effect and superelasticity. Shape Memory Materials (1998), 27–48.
[180]
SPIE. An Organic Optoelectronic Muscle Contraction Sensor for Prosthetics. Retrieved August 29, 2022 fromhttps://spie.org/news/5812-an-organic-optoelectronic-muscle-contraction-sensor-for-prosthetics?SSO=1
[181]
E. Steltz, A. Mozeika, J. Rembisz, N. Corson, and H. M. Jaeger. 2010. Jamming as an enabling technology for soft robotics. In Proceedings of the Electroactive Polymer Actuators and Devices. Yoseph Bar-Cohen (Ed.), SPIE. DOI:
[182]
Joseph F. Sucher, S. Rob Todd, Stephen L. Jones, Terry Throckmorton, Krista L. Turner, and Frederick A. Moore. 2011. Robotic telepresence: A helpful adjunct that is viewed favorably by critically ill surgical patients. The American Journal of Surgery 202, 6 (2011), 843–847. DOI:
[183]
Takushi Sugino, Kenji Kiyohara, Ichiroh Takeuchi, Ken Mukai, and Kinji Asaka. 2009. Actuator properties of the complexes composed by carbon nanotube and ionic liquid: The effects of additives. Sensors and Actuators B: Chemical 141, 1 (2009), 179–186. DOI:
[184]
Takushi Sugino, Kenji Kiyohara, Ichiroh Takeuchi, Ken Mukai, and Kinji Asaka. 2011. Improving the actuating response of carbon nanotube/ionic liquid composites by the addition of conductive nanoparticles. Carbon 49, 11 (2011), 3560–3570. DOI:
[185]
C. Supakitamonphan, S. Suksri, N. Pramunrueang, and T. Chaichana. 2015. Electric prosthetic hand activated using two-channel surface electromyography. In Proceedings of the 2015 8th Biomedical Engineering International Conference. IEEE. DOI:
[186]
Wei Tan and Gerald E. Loeb. 2007. Feasibility of prosthetic posture sensing via injectable electronic modules. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15, 2 (2007), 295–309. DOI:
[187]
Wee Choon Tan, Abdul Salleh, Saifulnizan Jamian, and Mohd Imran Ghazali. 2007. Phase transformation temperatures for shape memory alloy wire. Transaction on Engineering, Computing and Technology 19 (2007).
[188]
Shiow-Jing Tang, An-Tsai Wang, Su-Yin Lin, Kuan-Yeh Huang, Chun-Chuen Yang, Jui-Ming Yeh, and Kuan-Cheng Chiu. 2011. Polymerization of aniline under various concentrations of APS and HCl. Polymer Journal 43, 8 (2011), 667–675. DOI:
[189]
Hironari Taniguchi. 2013. Flexible artificial muscle actuator using coiled shape memory alloy wires. APCBEE Procedia 7 (2013), 54–59. DOI:
[190]
S. Tarantino, F. Clemente, D. Barone, M. Controzzi, and C. Cipriani. 2017. The myokinetic control interface: Tracking implanted magnets as a means for prosthetic control. Scientific Reports 7, 1 (2017). DOI:
[191]
Georgia Tech. [Accessed: 2013-12-02 04:42:01]. Georgia Tech Tongue Drive System - YouTube. Retrieved December 02, 2013 fromhttps://www.youtube.com/watch?v=KZHBNYd-eWs
[192]
Seppe Terryn, Jakob Langenbach, Ellen Roels, Joost Brancart, Camille Bakkali-Hassani, Quentin-Arthur Poutrel, Antonia Georgopoulou, Thomas George Thuruthel, Ali Safaei, Pasquale Ferrentino, Tutu Sebastian, Sophie Norvez, Fumiya Iida, Anton W. Bosman, François Tournilhac, Frank Clemens, Guy Van Assche, and Bram Vanderborght. 2021. A review on self-healing polymers for soft robotics. Materials Today 47 (2021), 187–205. DOI:
[193]
Vijay Kumar Thakur and Michael R. Kessler. 2015. Self-healing polymer nanocomposite materials: A review. Polymer 69 (2015), 369–383. DOI:
[194]
Peppino Tropea, Alberto Mazzoni, Silvestro Micera, and Massimo Corbo. 2017. Giuliano Vanghetti and the innovation of “cineplastic operations”. Neurology 89, 15 (2017), 1627–1632. DOI:
[195]
Vaibhaw, Jay Sarraf, and P.K. Pattnaik. 2020. Brain–computer interfaces and their applications. In Proceedings of the An Industrial IoT Approach for Pharmaceutical Industry Growth. Elsevier, 31–54. DOI:
[196]
Giacomo Valle, Greta Preatoni, and Stanisa Raspopovic. 2021. Connecting residual nervous system and prosthetic legs for sensorimotor and cognitive rehabilitation. In Proceedings of the Somatosensory Feedback for Neuroprosthetics. Elsevier, 293–320. DOI:
[197]
Giacomo Valle, Greta Preatoni, and Stanisa Raspopovic. 2021. Connecting residual nervous system and prosthetic legs for sensorimotor and cognitive rehabilitation. In Proceedings of the Somatosensory Feedback for Neuroprosthetics. Elsevier, 293–320. DOI:
[198]
Meel Velliste, Sagi Perel, M. Chance Spalding, Andrew S. Whitford, and Andrew B. Schwartz. 2008. Cortical control of a prosthetic arm for self-feeding. Nature 453, 7198 (2008), 1098–1101. DOI:
[199]
Marco Vilela and Leigh R. Hochberg. 2020. Applications of brain-computer interfaces to the control of robotic and prosthetic arms. In Proceedings of the Brain-Computer Interfaces. Elsevier, 87–99. DOI:
[200]
S. von Delius, R. Schmid, and A. Meining. 2010. Pill camera. Endoscopy 42, S 02 (2010), E161–E161. DOI:
[201]
David Vossler, Michael Doherty, Robert Goodman, Lawrence Hirsch, Jacob Young, and Diana Kraemer. 2004. Early safety experience with a fully implanted intracranial responsive neurostimulator for epilepsy. In Proceedings of the Annual Meeting of the American Epilepsy Society, New Orleans.
[202]
Vincent Wall, Raphael Deimel, and Oliver Brock. 2015. Selective stiffening of soft actuators based on jamming. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation. IEEE. DOI:
[203]
Frederick E. Wang. 1986. Nitinol, a “memory“ alloy in action. Metallography 19, 2 (1986), 257–259. DOI:
[204]
Lin Wang, Liancheng Yang, and Gislin Dagnelie. 2008. Initiation and Stability of Pursuit Eye Movements in Simulated Retinal Prosthesis at Different Implant Locations. Investigative Opthalmology & Visual Science 49, 9 (2008), 3933. DOI:
[205]
Yanjie Wang and Takushi Sugino. 2018. Ionic polymer actuators: Principle, fabrication and applications. In Proceedings of the Actuators. InTech. DOI:
[206]
Benjamin Ward-Cherrier, Nicholas Pestell, Luke Cramphorn, Benjamin Winstone, Maria Elena Giannaccini, Jonathan Rossiter, and Nathan F. Lepora. 2018. The TacTip family: Soft optical tactile sensors with 3d-printed biomimetic morphologies. Soft Robotics 5, 2 (2018), 216–227. DOI:
[207]
Aadil Waseem, Ameer Abdullah, Indrajit V. Bagal, Jun-Seok Ha, June Key Lee, and Sang-Wan Ryu. 2022. Self-powered and flexible piezo-sensors based on conductivity-controlled GaN nanowire-arrays for mimicking rapid- and slow-adapting mechanoreceptors. npj Flexible Electronics 6, 1 (2022). DOI:
[208]
Accessible web. Assistive Technology Focus: Sip and Puff Devices | Accessible Web. Retrieved August 29, 2022 fromhttps://accessibleweb.com/assistive-technologies/assistive-technology-focus-sip-and-puff-devices/
[209]
R.F. Weir, P.R. Troyk, G. DeMichele, and D. Kerns. 2005. Technical details of the implantable myoelectric sensor (IMES) system for multifunction prosthesis control. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE. DOI:
[210]
Richard F. Weir, Phil R. Troyk, Glen A. DeMichele, Douglas A. Kerns, Jack F. Schorsch, and Huub Maas. 2009. Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording. IEEE Transactions on Biomedical Engineering 56, 1 (2009), 159–171.
[211]
D. F. Williams. 1980. Implantable prostheses. Physics in Medicine and Biology 25, 4 (1980), 611–636. DOI:
[212]
Jonathan R. Wolpaw and Dennis J. McFarland. 2004. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences 101, 51 (2004), 17849–17854. DOI:
[213]
Rich Wordsworth. When prosthetics meet aesthetics — eandt.theiet.org. Retrieved September 14, 2022 fromhttps://eandt.theiet.org/content/articles/2020/01/when-prosthetics-meet-aesthetics/
[214]
Bilige Yang, Robert Baines, Dylan Shah, Sreekalyan Patiballa, Eugene Thomas, Madhusudhan Venkadesan, and Rebecca Kramer-Bottiglio. 2021. Reprogrammable soft actuation and shape-shifting via tensile jamming. Science Advances 7, 40 (2021). DOI:
[215]
Hee Doo Yang, Brandyn T. Greczek, and Alan T. Asbeck. 2019. Modeling and analysis of a high-displacement pneumatic artificial muscle with integrated sensing. Frontiers in Robotics and AI 5 (2019). DOI:
[216]
Jun Chang Yang, Jaewan Mun, Se Young Kwon, Seongjun Park, Zhenan Bao, and Steve Park. 2019. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Advanced Materials 31, 48 (2019), 1904765. DOI:
[217]
Nivasan Yogeswaran, Ensieh S. Hosseini, and Ravinder Dahiya. 2020. Graphene based low voltage field effect transistor coupled with biodegradable piezoelectric material based dynamic pressure sensor. ACS Applied Materials & Interfaces 12, 48 (2020), 54035–54040. DOI:
[218]
Byron M. Yu, Gopal Santhanam, Maneesh Sahani, and Krishna V. Shenoy. 2010. Neural decoding for motor and communication prostheses. In Proceedings of the Statistical Signal Processing for Neuroscience and Neurotechnology. Elsevier, 219–263. DOI:
[219]
M.A. Zenati and M. Mahvash. 2012. Robotic systems for cardiovascular interventions. In Proceedings of the Medical Robotics. Elsevier, 78–89. DOI:
[220]
Zhong Zhang, Tao Han, Jia Pan, and Zheng Wang. 2018. CATCH-919 Hand: Design of a 9-actuator 19-DOF Anthropomorphic Robotic Hand. arXiv:1809.04290. Retrieved from https://arxiv.org/abs/1809.04290
[221]
Y.P. Zheng, M.M.F. Chan, J. Shi, X. Chen, and Q.H. Huang. 2006. Sonomyography: Monitoring morphological changes of forearm muscles in actions with the feasibility for the control of powered prosthesis. Medical Engineering & Physics 28, 5 (2006), 405–415. DOI:
[222]
Hao Zhou, Alireza Mohammadi, Denny Oetomo, and Gursel Alici. 2019. A novel monolithic soft robotic thumb for an anthropomorphic prosthetic hand. IEEE Robotics and Automation Letters 4, 2 (2019), 602–609. DOI:

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 56, Issue 8
August 2024
963 pages
EISSN:1557-7341
DOI:10.1145/3613627
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 April 2024
Online AM: 15 February 2024
Accepted: 31 January 2024
Revised: 23 October 2023
Received: 19 October 2022
Published in CSUR Volume 56, Issue 8

Check for updates

Author Tags

  1. Robotic prosthetics
  2. neuroprosthetics
  3. soft robotics
  4. electroactive polymer
  5. EMG
  6. HMI

Qualifiers

  • Survey

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 508
    Total Downloads
  • Downloads (Last 12 months)508
  • Downloads (Last 6 weeks)107
Reflects downloads up to 01 Sep 2024

Other Metrics

Citations

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media