Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey

Rearrangement Distance Problems: An updated survey

Published: 26 April 2024 Publication History
  • Get Citation Alerts
  • Abstract

    One of the challenges in the Comparative Genomics field is to infer how close two organisms are based on the similarities and differences between their genetic materials. Recent advances in DNA sequencing have made complete genomes increasingly available. That said, several new algorithms trying to infer the distance between two organisms based on genome rearrangements have been proposed in the literature. However, given the diversity of approaches, the diversity of genome rearrangement events, or even how each work models the genomes and what assumptions are made by each of them, finding the ideal algorithm for each situation or simply knowing the range of applicable approaches can be challenging. In this work, we review these approaches having the algorithmic and combinatorial advances since 2010 as our main focus. This survey aims to organize the recently published papers using a concise notation and to indicate the gaps filled by each of them in the literature. This makes it easier to understand what still needs to be done and what has room for enhancement.

    References

    [1]
    Max A. Alekseyev. 2008. Multi-break rearrangements and breakpoint re-uses: From circular to linear genomes. Journal of Computational Biology 15, 8 (2008), 1117–1131.
    [2]
    Max A. Alekseyev and Pavel A. Pevzner. 2008. Multi-break rearrangements and chromosomal evolution. Theoretical Computer Science 395, 2-3 (2008), 193–202.
    [3]
    Alexsandro Oliveira Alexandrino, Klairton Lima Brito, Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. 2022. A 1.375-approximation algorithm for sorting by transpositions with faster running time. In Proceedings of the 15th Brazilian Symposium on Bioinformatics (BSB’2022). Lecture Notes in Computer Science, Vol. 13523. Springer Nature Switzerland, 147–157.
    [4]
    Alexsandro Oliveira Alexandrino, Klairton Lima Brito, Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. 2022. Reversal and indel distance with intergenic region information. IEEE/ACM Transactions on Computational Biology and Bioinformatics 0, PP (2022), 1–13. DOI:
    [5]
    Alexsandro Oliveira Alexandrino, Carla Negri Lintzmayer, and Zanoni Dias. 2020. Sorting permutations by fragmentation-weighted operations. Journal of Bioinformatics and Computational Biology 18, 2 (2020), 2050006.1–2050006.31.
    [6]
    Alexsandro Oliveira Alexandrino, Guilherme Henrique Santos Miranda, Carla Negri Lintzmayer, and Zanoni Dias. 2021. Length-weighted \(\lambda\) -rearrangement Distance. Journal of Combinatorial Optimization 41, 3 (2021), 579–603.
    [7]
    Alexsandro Oliveira Alexandrino, Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. 2020. On the complexity of some variations of sorting by transpositions. Journal of Universal Computer Science 26, 9 (2020), 1076–1094.
    [8]
    Alexsandro Oliveira Alexandrino, Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. 2021. Genome rearrangement distance with reversals, transpositions, and indels. Journal of Computational Biology 28, 3 (2021), 235–247.
    [9]
    Alexsandro Oliveira Alexandrino, Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. 2021. Incorporating intergenic regions into reversal and transposition distances with indels. Journal of Bioinformatics and Computational Biology 19, 06 (2021), 2140011.
    [10]
    Alexsandro Oliveira Alexandrino, Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. 2022. Labeled cycle graph for transposition and indel distance. Journal of Computational Biology 29, 03 (2022), 243–256.
    [11]
    Alexsandro Oliveira Alexandrino, Andre Rodrigues Oliveira, Géraldine Jean, Guillaume Fertin, Ulisses Dias, and Zanoni Dias. 2022. Transposition distance considering intergenic regions for unbalanced genomes. In Proceedings of the 18th International Symposium on Bioinformatics Research and Applications (ISBRA’2022), Vol. 13760. Springer Nature Switzerland, 100–113.
    [12]
    David A. Bader, Bernard M. E. Moret, and Mi Yan. 2001. A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology 8 (2001), 483–491.
    [13]
    Martin Bader and Enno Ohlebusch. 2007. Sorting by weighted reversals, transpositions, and inverted transpositions. Journal of Computational Biology 14, 5 (2007), 615–636.
    [14]
    Vineet Bafna and Pavel A. Pevzner. 1996. Genome rearrangements and sorting by reversals. SIAM Journal on Computing 25, 2 (1996), 272–289.
    [15]
    Vineet Bafna and Pavel A. Pevzner. 1998. Sorting by transpositions. SIAM Journal on Discrete Mathematics 11, 2 (1998), 224–240.
    [16]
    Michael A. Bender, Dongdong Ge, Simai He, Haodong Hu, Ron Y. Pinter, Steven S. Skiena, and Firas Swidan. 2008. Improved bounds on sorting by length-weighted reversals. Journal of Computer and System Sciences 74, 5 (2008), 744–774.
    [17]
    Anne Bergeron. 2005. A very elementary presentation of the Hannenhalli-Pevzner theory. Discrete Applied Mathematics 146, 2 (2005), 134–145.
    [18]
    Anne Bergeron, Julia Mixtacki, and Jens Stoye. 2006. A unifying view of genome rearrangements. In International Workshop on Algorithms in Bioinformatics. Springer, Springer, Berlin, 163–173.
    [19]
    Anne Bergeron, Julia Mixtacki, and Jens Stoye. 2009. A new linear time algorithm to compute the genomic distance via the double cut and join distance. Theoretical Computer Science 410, 51 (2009), 5300–5316. DOI:
    [20]
    Piotr Berman, Sridhar Hannenhalli, and Marek Karpinski. 2002. 1.375-Approximation algorithm for sorting by reversals. In Proceedings of the 10th Annual European Symposium on Algorithms (ESA’2002), R. Möhring and R. Raman (Eds.). Lecture Notes in Computer Science, Vol. 2461. Springer-Verlag Berlin New York, Berlin, Germany, 200–210.
    [21]
    Sangeeta Bhatia, Pedro Feijão, and Andrew R. Francis. 2018. Position and content paradigms in genome rearrangements: The wild and crazy world of permutations in genomics. Bulletin of Mathematical Biology 80, 12 (2018), 3227–3246.
    [22]
    Daniel Bienstock and Oktay Günlük. 1994. A degree sequence problem related to network design. Networks 24 (1994), 195–205.
    [23]
    Priscila Biller, Laurent Guéguen, Carole Knibbe, and Eric Tannier. 2016. Breaking good: Accounting for fragility of genomic regions in rearrangement distance estimation. Genome Biology and Evolution 8, 5 (2016), 1427–1439.
    [24]
    Priscila Biller, Carole Knibbe, Guillaume Beslon, and Eric Tannier. 2016. Comparative genomics on artificial life. In Pursuit of the Universal. Springer International Publishing, 35–44.
    [25]
    Mathieu Blanchette, Takashi Kunisawa, and David Sankoff. 1996. Parametric genome rearrangement. Gene 172, 1 (1996), GC11–GC17.
    [26]
    Marília D. V. Braga, Eyla Willing, and Jens Stoye. 2011. Double cut and join with insertions and deletions. Journal of Computational Biology 18, 9 (2011), 1167–1184.
    [27]
    Klairton Lima Brito, Alexsandro Oliveira Alexandrino, Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. 2022. Genome rearrangement distance with a flexible intergenic regions aspect. IEEE/ACM Transactions on Computational Biology and Bioinformatics PP, 0 (2022), 1–13. DOI:
    [28]
    Klairton Lima Brito, Géraldine Jean, Guillaume Fertin, Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. 2020. Sorting by genome rearrangements on both gene order and intergenic sizes. Journal of Computational Biology 27, 2 (2020), 156–174.
    [29]
    Klairton Lima Brito, Andre Rodrigues Oliveira, Alexsandro Oliveira Alexandrino, Ulisses Dias, and Zanoni Dias. 2021. An improved approximation algorithm for the reversal and transposition distance considering gene order and intergenic sizes. Algorithms for Molecular Biology 16, 1 (2021), 1–21.
    [30]
    Klairton Lima Brito, Andre Rodrigues Oliveira, Alexsandro Oliveira Alexandrino, Ulisses Dias, and Zanoni Dias. 2021. Reversal and transposition distance of genomes considering flexible intergenic regions. In Proceedings of the XI Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS’2021). Procedia Computer Science, Elsevier, 21–29.
    [31]
    Klairton Lima Brito, Andre Rodrigues Oliveira, Alexsandro Oliveira Alexandrino, Ulisses Dias, and Zanoni Dias. 2022. A new approach for the reversal distance with indels and moves in intergenic regions. In Proceedings of 19th Annual Satellite Conference of RECOMB on Comparative Genomics (RECOMB-CG’2022), Vol. 13234. Springer International Publishing, 205–220.
    [32]
    Laurent Bulteau, Guillaume Fertin, Géraldine Jean, and Christian Komusiewicz. 2021. Sorting by multi-cut rearrangements. Algorithms 14, 6 (2021), 169.
    [33]
    Laurent Bulteau, Guillaume Fertin, and Christian Komusiewicz. 2016. (Prefix) reversal distance for (signed) strings with few blocks or small alphabets. Journal of Discrete Algorithms 37 (2016), 44–55.
    [34]
    Laurent Bulteau, Guillaume Fertin, and Irena Rusu. 2012. Sorting by transpositions is difficult. SIAM Journal on Discrete Mathematics 26, 3 (2012), 1148–1180.
    [35]
    Laurent Bulteau, Guillaume Fertin, and Irena Rusu. 2015. Pancake flipping is hard. J. Comput. System Sci. 81, 8 (Dec.2015), 1556–1574.
    [36]
    Laurent Bulteau, Guillaume Fertin, and Eric Tannier. 2016. Genome rearrangements with indels in intergenes restrict the scenario space. BMC Bioinformatics 17, 14 (2016), 426.
    [37]
    Laurent Bulteau and Mathias Weller. 2019. Parameterized algorithms in bioinformatics: An overview. Algorithms 12, 12 (2019), 256.
    [38]
    Ben Cameron, Joe Sawada, Wei Therese, and Aaron Williams. 2022. Hamiltonicity of k-sided pancake networks with fixed-spin: Efficient generation, ranking, and optimality. Algorithmica 0, PP (2022), 1–28. DOI:
    [39]
    Alberto Caprara. 1999. Sorting permutations by reversals and Eulerian cycle decompositions. SIAM Journal on Discrete Mathematics 12, 1 (1999), 91–110.
    [40]
    Xin Chen. 2010. On sorting permutations by double-cut-and-joins. In Proceedings of the 16th International Computing and Combinatorics Conference (COCOON’2010) (Lecture Notes in Computer Science), Vol. 6196. Springer, Berlin, 439–448.
    [41]
    Xin Chen. 2013. On sorting unsigned permutations by double-cut-and-joins. Journal of Combinatorial Optimization 25, 3 (2013), 339–351.
    [42]
    Xin Chen, Jie Zheng, Zheng Fu, Peng Nan, Yang Zhong, Stefano Lonardi, and Tao Jiang. 2005. Assignment of orthologous genes via genome rearrangement. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2, 4 (2005), 302–315.
    [43]
    Bhadrachalam Chitturi. 2015. Tighter upper bound for sorting permutations with prefix transpositions. Theoretical Computer Science 602 (2015), 22–31.
    [44]
    David A. Christie. 1996. Sorting permutations by block-interchanges. Information Processing Letters 60, 4 (1996), 165–169.
    [45]
    David A. Christie. 1998. A 3/2-Approximation algorithm for sorting by reversals. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’1998), H. Karloff (Ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 244–252.
    [46]
    Josef Cibulka. 2011. On average and highest number of flips in pancake sorting. Theoretical Computer Science 412, 8-10 (2011), 822–834.
    [47]
    David S. Cohen and Manuel Blum. 1995. On the problem of sorting burnt pancakes. Discrete Applied Mathematics 61, 2 (1995), 105–120.
    [48]
    Luís Felipe I. Cunha, Luis Antonio B. Kowada, Rodrigo de A. Hausen, and Celina M. H. de Figueiredo. 2015. A faster 1.375-approximation algorithm for sorting by transpositions. Journal of Computational Biology 22, 11 (2015), 1044–1056.
    [49]
    Thiago da S. Arruda, Ulisses Dias, and Zanoni Dias. 2018. A GRASP-based heuristic for the sorting by length-weighted inversions problem. IEEE-ACM Transactions on Computational Biology and Bioinformatics 15 (2018), 352–363.
    [50]
    Daniel A. Dalevi, Niklas Eriksen, Kimmo Eriksson, and Siv G. E. Andersson. 2002. Measuring genome divergence in bacteria: A case study using chlamydian data. Journal of Molecular Evolution 55, 1 (2002), 24–36.
    [51]
    Ulisses Dias and Zanoni Dias. 2013. Heuristics for the transposition distance problem. Journal of Bioinformatics and Computational Biology 11, 5 (2013), 17.
    [52]
    Ulisses Dias, Andre Rodrigues Oliveira, Klairton Lima Brito, and Zanoni Dias. 2019. Block-interchange distance considering intergenic regions. In Proceedings of the 12th Brazilian Symposium on Bioinformatics (BSB’2019). Vol. 11347. Springer International Publishing, 58–69.
    [53]
    Zanoni Dias and Ulisses Dias. 2015. Sorting by prefix reversals and prefix transpositions. Discrete Applied Mathematics 181 (2015), 78–89.
    [54]
    Zanoni Dias and João Meidanis. 2002. Sorting by prefix transpositions. In Proceedings of the 9th International Symposium on String Processing and Information Retrieval (SPIRE’2002), A. H. F. Laender and A. L. Oliveira (Eds.). Lecture Notes in Computer Science, Vol. 2476. Springer-Verlag Berlin New York, Berlin, Germany, 65–76.
    [55]
    Harry Dweighter. 1975. Problem E2569. American Mathematical Monthly 82 (1975), 1010.
    [56]
    Nadia El-Mabrouk. 2000. Genome rearrangement by reversals and insertions/deletions of contiguous segments. In Annual Symposium on Combinatorial Pattern Matching (CPM’2000). Springer, Springer, Berlin, 222–234.
    [57]
    Isaac Elias and Tzvika Hartman. 2006. A 1.375-approximation algorithm for sorting by transpositions. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3, 4 (2006), 369–379.
    [58]
    Niklas Eriksen. 2002. (1+ \(\epsilon\) )-Approximation of sorting by reversals and transpositions. Theoretical Computer Science 289, 1 (2002), 517–529.
    [59]
    Pedro Feijao and Joao Meidanis. 2011. SCJ: A breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8, 5 (2011), 1318–1329. DOI:
    [60]
    Guillaume Fertin, Loïc Jankowiak, and Géraldine Jean. 2018. Prefix and suffix reversals on strings. Discrete Applied Mathematics 246 (2018), 140–153. DOI:
    [61]
    Guillaume Fertin, Géraldine Jean, and Anthony Labarre. 2022. Sorting genomes by prefix double-cut-and-joins. In String Processing and Information Retrieval (SPIRE’2022). Springer International Publishing, Concepción, Chile, 178–190.
    [62]
    Guillaume Fertin, Géraldine Jean, and Eric Tannier. 2017. Algorithms for computing the double cut and join distance on both gene order and intergenic sizes. Algorithms for Molecular Biology 12, 1 (2017), 16.
    [63]
    Guillaume Fertin, Anthony Labarre, Irena Rusu, Éric Tannier, and Stéphane Vialette. 2009. Combinatorics of Genome Rearrangements. The MIT Press, London, England.
    [64]
    Johannes Fischer and Simon W. Ginzinger. 2005. A 2-approximation algorithm for sorting by prefix reversals. In Proceedings of the 13th Annual European Conference on Algorithms (ESA’2005) (Lecture Notes in Computer Science), G. S. Brodal and S. Leonardi (Eds.), Vol. 3669. Springer Berlin, Berlin, 415–425.
    [65]
    Gustavo R. Galvão, Orlando Lee, and Zanoni Dias. 2015. Sorting signed permutations by short operations. Algorithms for Molecular Biology 10, 1 (2015), 1–17.
    [66]
    Gustavo R. Galvão, Christian Baudet, and Zanoni Dias. 2017. Sorting circular permutations by super short reversals. IEEE/ACM Transactions on Computational Biology and Bioinformatics 14, 3 (2017), 620–633.
    [67]
    William H. Gates and Christos H. Papadimitriou. 1979. Bounds for sorting by prefix reversal. Discrete Mathematics 27, 1 (1979), 47–57.
    [68]
    Qian-Ping Gu, Shietung Peng, and Ivan H. Sudborough. 1999. A 2-approximation algorithm for genome rearrangements by reversals and transpositions. Theoretical Computer Science 210, 2 (1999), 327–339.
    [69]
    Sridhar Hannenhalli and Pavel A. Pevzner. 1999. Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. Journal of the ACM 46, 1 (1999), 1–27.
    [70]
    Tzvika Hartman and Roded Sharan. 2005. A 1.5-approximation algorithm for sorting by transpositions and transreversals. Journal of Computer and System Sciences 70, 3 (2005), 300–320.
    [71]
    Masud Hasan, Atif Rahman, Md. K. Rahman, Mohammad S. Rahman, Mahfuza Sharmin, and Rukhsana Yeasmin. 2015. Pancake flipping and sorting permutations. Journal of Discrete Algorithms 33 (2015), 139–149.
    [72]
    Lenwood S. Heath and John Paul C. Vergara. 2000. Sorting by short block-moves. Algorithmica 28, 3 (2000), 323–352.
    [73]
    Lenwood S. Heath and John Paul C. Vergara. 2003. Sorting by short swaps. Journal of Computational Biology 10, 5 (2003), 775–789.
    [74]
    Andrew J. Holland and Don W. Cleveland. 2012. Chromoanagenesis and cancer: Mechanisms and consequences of localized, complex chromosomal rearrangements. Nature Medicine 18, 11 (2012), 1630–1638.
    [75]
    Mark R. Jerrum. 1985. The complexity of finding minimum-length generator sequences. Theoretical Computer Science 36, 2-3 (1985), 265–289.
    [76]
    Haitao Jiang, Haodi Feng, and Daming Zhu. 2014. An 5/4-approximation algorithm for sorting permutations by short block moves. In Proceedings of the 25th International Symposium on Algorithms and Computation (ISAAC’2014) (Lecture Notes in Computer Science), H. Ahn and C. Shin (Eds.), Vol. 8889. Springer International Publishing, Jeonju, Korea, 491–503.
    [77]
    Haitao Jiang, Daming Zhu, and Binhai Zhu. 2012. A (1+e)-approximation algorithm for sorting by short block-moves. Theoretical Computer Science 437 (2012), 1–8.
    [78]
    M. P. Justan, F. P. Muga, and I. H. Sudborough. 2002. On the generalization of the pancake network. In Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. (I-SPAN’2002). IEEE Computer Society, Makati City, Metro Manila, Philippines, 173–178.
    [79]
    John D. Kececioglu and David Sankoff. 1995. Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. Algorithmica 13 (1995), 180–210.
    [80]
    Donald E. Knoth. 1973. Fundamental Algorithms: The Art of Computer Programming. Addison-Wesley, Reading, Massachusetts.
    [81]
    Anthony Labarre. 2013. Lower bounding edit distances between permutations. SIAM Journal on Discrete Mathematics 27, 3 (2013), 1410–1428.
    [82]
    Anthony Labarre. 2020. Sorting by prefix block-interchanges. In 31st International Symposium on Algorithms and Computation (ISAAC’2020), Vol. 181. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Hong Kong (Virtual Conference), 55:1–55:15.
    [83]
    Anthony Labarre and Josef Cibulka. 2011. Polynomial-time sortable stacks of burnt pancakes. Theoretical Computer Science 412, 8-10 (2011), 695–702.
    [84]
    Manuel Lafond and Binhai Zhu. 2021. Permutation-constrained common string partitions with applications. In String Processing and Information Retrieval (SPIRE’2021), Thierry Lecroq and Hélène Touzet (Eds.). Springer International Publishing, 47–60.
    [85]
    S. Lakshmivarahan, Jung-Sing Jwo, and Sudarshan Dhall. 1993. Symmetry in interconnection networks based on cayley graphs of permutation groups: A survey. Parallel Computing 19, 4 (1993), 361–407.
    [86]
    Jean-François Lefebvre, Nadia El-Mabrouk, Elisabeth R. M. Tillier, and David Sankoff. 2003. Detection and validation of single gene inversions. Bioinformatics 19, 1 (2003), i190–i196.
    [87]
    Guo-Hui Lin and Guoliang Xue. 2001. Signed genome rearrangement by reversals and transpositions: Models and approximations. Theoretical Computer Science 259, 1-2 (2001), 513–531.
    [88]
    Ying C. Lin, Chun-Yuan Lin, and Chunhung R. Lin. 2009. Sorting by reversals and block-interchanges with various weight assignments. BMC Bioinformatics 10, 1 (2009), 398.
    [89]
    Carla N. Lintzmayer, Guillaume Fertin, and Zanoni Dias. 2015. Approximation algorithms for sorting by length-weighted prefix and suffix operations. Theoretical Computer Science 593 (2015), 26–41.
    [90]
    Carla Negri Lintzmayer, Guillaume Fertin, and Zanoni Dias. 2017. Sorting permutations by prefix and suffix rearrangements. Journal of Bioinformatics and Computational Biology 15, 1 (2017), 1750002.
    [91]
    Aniket C. Mane, Manuel Lafond, Pedro C. Feijao, and Cedric Chauve. 2020. The distance and median problems in the single-cut-or-join model with single-gene duplications. Algorithms for Molecular Biology 15, 1 (2020), 1–14.
    [92]
    Mark Marron, Krister M. Swenson, and Bernard M. E. Moret. 2004. Genomic distances under deletions and insertions. Theoretical Computer Science 325, 3 (2004), 347–860.
    [93]
    István Miklós, Sándor Z. Kiss, and Eric Tannier. 2014. Counting and sampling SCJ small parsimony solutions. Theoretical Computer Science 552 (2014), 83–98. DOI:
    [94]
    Guilherme Henrique Santos Miranda, Alexsandro Oliveira Alexandrino, Carla Negri Lintzmayer, and Zanoni Dias. 2021. Approximation algorithms for sorting \(\lambda\) -permutations by \(\lambda\) -operations. Algorithms 14, 6 (2021), 175.
    [95]
    Guilherme Henrique Santos Miranda, Carla Negri Lintzmayer, and Zanoni Dias. 2018. Sorting permutations by limited-size operations. In Proceedings of the 5th International Conference on Algorithms for Computational Biology (AlCoB’2018). Vol. 10849. Springer International Publishing, Germany, 76–87.
    [96]
    Thach C. Nguyen, Hieu T. Ngo, and Nguyen B. Nguyen. 2005. Sorting by restricted-length-weighted reversals. Genomics Proteomics & Bioinformatics 3, 2 (2005), 120–127.
    [97]
    Andre Rodrigues Oliveira, Alexsandro Oliveira Alexandrino, Géraldine Jean, Guillaume Fertin, Ulisses Dias, and Zanoni Dias. 2023. Approximation algorithms for sorting by k-cuts on signed permutations. Journal of Combinatorial Optimization 45, 1 (2023), 6.
    [98]
    Andre Rodrigues Oliveira, Klairton Lima Brito, Ulisses Dias, and Zanoni Dias. 2019. On the complexity of sorting by reversals and transpositions problems. Journal of Computational Biology 26, 11 (2019), 1223–1229.
    [99]
    Andre Rodrigues Oliveira, Klairton Lima Brito, Zanoni Dias, and Ulisses Dias. 2019. Sorting by weighted reversals and transpositions. Journal of Computational Biology 26 (2019), 420–431.
    [100]
    Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. 2017. On the sorting by reversals and transpositions problem. Journal of Universal Computer Science 23 (2017), 868–906.
    [101]
    Andre Rodrigues Oliveira, Guillaume Fertin, Ulisses Dias, and Zanoni Dias. 2018. Sorting signed circular permutations by super short operations. Algorithms for Molecular Biology 13, 1 (2018), 13.
    [102]
    Andre Rodrigues Oliveira, Géraldine Jean, Guillaume Fertin, Klairton Lima Brito, Laurent Bulteau, Ulisses Dias, and Zanoni Dias. 2021. Sorting signed permutations by intergenic reversals. IEEE/ACM Transactions on Computational Biology and Bioinformatics 18, 6 (2021), 2870–2876.
    [103]
    Andre Rodrigues Oliveira, Géraldine Jean, Guillaume Fertin, Klairton Lima Brito, Ulisses Dias, and Zanoni Dias. 2021. Sorting permutations by intergenic operations. IEEE/ACM Transactions on Computational Biology and Bioinformatics 18, 6 (2021), 2080–2093.
    [104]
    Andre Rodrigues Oliveira, Géraldine Jean, Guillaume Fertin, Ulisses Dias, and Zanoni Dias. 2019. Super short operations on both gene order and intergenic sizes. Algorithms for Molecular Biology 14, 1 (2019), 1–17.
    [105]
    Jayakumar Pai and Bhadrachalam Chitturi. 2021. Approximation algorithms for sorting permutations by extreme block-interchanges. Theoretical Computer Science 891 (2021), 105–115. DOI:
    [106]
    Franck Pellestor and Vincent Gatinois. 2020. Chromoanagenesis: A piece of the macroevolution scenario. Molecular Cytogenetics 13, 1 (2020), 1–9.
    [107]
    Pavel A. Pevzner and Michael S. Waterman. 1995. Open combinatorial problems in computational molecular biology. In Proceedings of the 3rd Israel Symposium on the Theory of Computing Systems (ISTCS’1995). IEEE Computer Society, Washington, DC, USA, 158–173.
    [108]
    Ron Y. Pinter and Steven Skiena. 2002. Genomic sorting with length-weighted reversals. Genome Informatics 13 (2002), 103–111.
    [109]
    Xingqin Qi, Jichang Wu, Shuguang Li, and Guojun Li. 2008. Sorting by transpositions: Dealing with length-weighted models. International Journal of Bioinformatics Research and Applications 4, 2 (2008), 164.
    [110]
    Atif Rahman, Swakkhar Shatabda, and Masud Hasan. 2008. An approximation algorithm for sorting by reversals and transpositions. Journal of Discrete Algorithms 6, 3 (2008), 449–457.
    [111]
    Diego P. Rubert, Pedro Feijão, Marília Dias Vieira Braga, Jens Stoye, and Fábio Henrique Viduani Martinez. 2017. Approximating the DCJ distance of balanced genomes in linear time. Algorithms for Molecular Biology 12, 1 (2017), 1–13.
    [112]
    Cathal Seoighe, Nancy Federspiel, Ted Jones, Nancy Hansen, Vesna Bivolarovic, Ray Surzycki, Raquel Tamse, Caridad Komp, Lucas Huizar, Ronald W. Davis, Stewart Scherer, Evelyn Tait, Duncan J. Shaw, David Harris, Lee Murphy, Karen Oliver, Kate Taylor, Marie-Adele Rajandream, Bart G. Barrell, and Kenneth H. Wolfe. 2000. Prevalence of small inversions in yeast gene order evolution. Proceedings of the National Academy of Sciences 97, 26 (2000), 14433–14437.
    [113]
    Dana Shapira and James A. Storer. 2007. Edit distance with move operations. Journal of Discrete Algorithms 5, 2 (2007), 380–392.
    [114]
    Luiz Augusto G. Silva, Luis Antonio B. Kowada, Noraí Romeu Rocco, and Maria Emília M. T. Walter. 2022. A new 1.375-approximation algorithm for sorting by transpositions. Algorithms for Molecular Biology 17, 1 (2022), 1–17.
    [115]
    Pijus Simonaitis, Annie Chateau, and Krister M. Swenson. 2018. A general framework for genome rearrangement with biological constraints. In Comparative Genomics. Springer International Publishing, 49–71.
    [116]
    Pijus Simonaitis, Annie Chateau, and Krister M. Swenson. 2019. Weighted minimum-length rearrangement scenarios. In 19th International Workshop on Algorithms in Bioinformatics (WABI’2019) (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 143. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 13:1–13:17.
    [117]
    Pijus Simonaitis and Benjamin J. Raphael. 2022. A maximum parsimony principle for multichromosomal complex genome rearrangements. In 22nd International Workshop on Algorithms in Bioinformatics (WABI’2022) (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 242. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 21:1–21:22.
    [118]
    Gabriel Siqueira, Alexsandro Oliveira Alexandrino, and Zanoni Dias. 2022. Signed rearrangement distances considering repeated genes and intergenic regions. In Proceedings of 14th International Conference on Bioinformatics and Computational Biology (BICoB’2022), Vol. 83. EasyChair, 31–42.
    [119]
    Gabriel Siqueira, Alexsandro Oliveira Alexandrino, Andre Rodrigues Oliveira, and Zanoni Dias. 2021. Approximation algorithm for rearrangement distances considering repeated genes and intergenic regions. Algorithms for Molecular Biology 16, 1 (2021), 1–23.
    [120]
    Philip Stephens, Chris Greenman, Beiyuan Fu, Fengtang Yang, Graham Bignell, Laura Mudie, Erin Pleasance, King Lau, David Beare, Lucy Stebbings, Stuart Mclaren, Meng-Lay Lin, David McBride, Ignacio Varela, Serena Nik-Zainal, Catherine Leroy, Mingming Jia, Andrew Menzies, Adam Butler, and Peter Campbell. 2011. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144 (012011), 27–40. DOI:
    [121]
    Chengcheng Sun and Haitao Jiang. 2021. An approximation algorithm for unifying adjacencies by double cut and joins in unsigned genomes. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 86–91. DOI:
    [122]
    Krister Swenson, Pijus Simonaitis, and Mathieu Blanchette. 2016. Models and algorithms for genome rearrangement with positional constraints. Algorithms for Molecular Biology 11 (052016), 13. DOI:
    [123]
    Krister M. Swenson and Pijus Simonaitis. 2018. Finding local genome rearrangements. Algorithms for Molecular Biology 13 (2018), 9–23.
    [124]
    Firas Swidan, Michael A. Bender, Dongdong Ge, Simai He, Haodong Hu, and Ron Y. Pinter. 2004. Sorting by length-weighted reversals: Dealing with signs and circularity. In Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching (CPM’2004), S. Sahinalp, S. Muthukrishnan, and U. Dogrusoz (Eds.). Lecture Notes in Computer Science, Vol. 3109. Springer Berlin,Germany, 32–46.
    [125]
    Eric Tannier and Marie-France Sagot. 2004. Sorting by reversals in subquadratic time. In Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching (CPM’2004) (Lecture Notes in Computer Science), S. C. Sahinalp, S. Muthukrishnan, and U. Dogrusoz (Eds.), Vol. 3109. Springer Berlin, Berlin, Germany, 1–13.
    [126]
    John P. C. Vergara. 1998. Sorting by Bounded Permutations. Ph.D. Dissertation. Virginia Polytechnic Institute and State University.
    [127]
    Maria E. M. T. Walter, Zanoni Dias, and João Meidanis. 1998. Reversal and transposition distance of linear chromosomes. In Proceedings of the 5th International Symposium on String Processing and Information Retrieval (SPIRE’1998). IEEE Computer Society, Los Alamitos, CA, USA, 96–102.
    [128]
    Eyla Willing, Jens Stoye, and Marília Braga. 2021. Computing the inversion-indel distance. IEEE/ACM Transactions on Computational Biology and Bioinformatics 18, 6 (2021), 2314–2326.
    [129]
    Eyla Willing, Simone Zaccaria, Marília D. V. Braga, and Jens Stoye. 2013. On the inversion-indel distance. BMC Bioinformatics 14 (2013), S3.
    [130]
    Sophia Yancopoulos, Oliver Attie, and Richard Friedberg. 2005. Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 16 (2005), 3340–3346.
    [131]
    Ron Zeira and Ron Shamir. 2019. Genome rearrangement problems with single and multiple gene copies: A review. In Bioinformatics and Phylogenetics. Springer International Publishing, 205–241.
    [132]
    Shu Zhang, Daming Zhu, Haitao Jiang, Jiong Guo, Haodi Feng, and Xiaowen Liu. 2021. Sorting a permutation by best short swaps. Algorithmica 83, 7 (2021), 1953–1979.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 56, Issue 8
    August 2024
    963 pages
    ISSN:0360-0300
    EISSN:1557-7341
    DOI:10.1145/3613627
    • Editors:
    • David Atienza,
    • Michela Milano
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 April 2024
    Online AM: 20 March 2024
    Accepted: 07 March 2024
    Revised: 24 November 2023
    Received: 06 February 2023
    Published in CSUR Volume 56, Issue 8

    Check for updates

    Author Tags

    1. Genome rearrangements
    2. approximation algorithms
    3. sorting permutations
    4. comparative genomics

    Qualifiers

    • Survey

    Funding Sources

    • National Council of Technological and Scientific Development, CNPq
    • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
    • São Paulo Research Foundation, FAPESP

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 190
      Total Downloads
    • Downloads (Last 12 months)190
    • Downloads (Last 6 weeks)45

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media