Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3666000.3669704acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

On Minimal and Minimum Cylindrical Algebraic Decompositions

Published: 16 July 2024 Publication History

Abstract

We consider cylindrical algebraic decompositions (CADs) as a tool for representing semi-algebraic subsets of <Formula format="inline"><TexMath><?TeX $\mathbb {R}^n$?></TexMath><AltText>Math 1</AltText><File name="issac24-34-inline1" type="svg"/></Formula>. In this framework, a CAD <Formula format="inline"><TexMath><?TeX $\mathscr{C}$?></TexMath><AltText>Math 2</AltText><File name="issac24-34-inline2" type="svg"/></Formula> is adapted to a given set S if S is a union of cells of <Formula format="inline"><TexMath><?TeX $\mathscr{C}$?></TexMath><AltText>Math 3</AltText><File name="issac24-34-inline3" type="svg"/></Formula>. Different algorithms computing an adapted CAD may produce different outputs, usually with redundant cell divisions. In this paper we analyse the possibility to remove the superfluous data. More precisely we consider the set CAD(S) of CADs that are adapted to S, endowed with the refinement partial order and we study the existence of minimal and minimum elements in this poset.
We show that for every semi-algebraic set S of <Formula format="inline"><TexMath><?TeX $\mathbb {R}^n$?></TexMath><AltText>Math 4</AltText><File name="issac24-34-inline4" type="svg"/></Formula> and every CAD <Formula format="inline"><TexMath><?TeX $\mathscr{C}$?></TexMath><AltText>Math 5</AltText><File name="issac24-34-inline5" type="svg"/></Formula> adapted to S, there is a minimal CAD adapted to S and smaller (i.e. coarser) than or equal to <Formula format="inline"><TexMath><?TeX $\mathscr{C}$?></TexMath><AltText>Math 6</AltText><File name="issac24-34-inline6" type="svg"/></Formula>. Moreover, when n = 1 or n = 2, we strengthen this result by proving the existence of a minimum element in CAD(S). Astonishingly for n ≥ 3, there exist semi-algebraic sets whose associated poset of adapted CADs does not admit a minimum. We prove this result by providing explicit examples. We finally use a reduction relation on CAD(S) to define an algorithm for the computation of minimal CADs. We conclude with a characterization of those semi-algebraic sets S for which CAD(S) has a minimum by means of confluence of the associated reduction system.

References

[1]
D. S. Arnon, G. E. Collins, and S. McCallum. 1998. Cylindrical Algebraic Decomposition I: The Basic Algorithm. In Quantifier Elimination and Cylindrical Algebraic Decomposition, B. F. Caviness and J. R. Johnson (Eds.). Springer Vienna, Vienna, 136–151. https://doi.org/10.1007/978-3-7091-9459-1_6
[2]
F. Baader and T. Nipkow. 1998. Term rewriting and all that. Cambridge University Press, USA. https://doi.org/10.1017/CBO9781139172752
[3]
S. Basu, R. Pollack, and M.F. Coste-Roy. 2007. Algorithms in Real Algebraic Geometry. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-33099-2
[4]
J. Bochnak, M. Coste, and M-F. Roy. 1998. Real Algebraic Geometry. Springer. https://doi.org/10.1007/978-3-662-03718-8
[5]
C. W. Brown. 2001. Improved Projection for Cylindrical Algebraic Decomposition. Journal of Symbolic Computation 32, 5 (2001), 447–465. https://doi.org/10.1006/jsco.2001.0463
[6]
C. W. Brown. 2001. Simple CAD Construction and its Applications. Journal of Symbolic Computation 31, 5 (2001), 521–547. https://doi.org/10.1006/jsco.2000.0394
[7]
C. W. Brown. 2017. Projection and Quantifier Elimination Using Non-Uniform Cylindrical Algebraic Decomposition. In Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation (Kaiserslautern, Germany) (ISSAC ’17). ACM, New York, NY, USA, 53–60. https://doi.org/10.1145/3087604.3087651
[8]
C. Chen and M. M. Maza. 2014. Quantifier Elimination by Cylindrical Algebraic Decomposition Based on Regular Chains. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (Kobe, Japan) (ISSAC ’14). ACM, New York, NY, USA, 91–98. https://doi.org/10.1145/2608628.2608666
[9]
G. E. Collins. 1975. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Lecture Notes in Computer Science (1975). https://doi.org/10.1007/3-540-07407-4_17
[10]
J. H. Davenport, A. S. Nair, G. K. Sankaran, and A. K. Uncu. 2023. Lazard-Style CAD and Equational Constraints. In Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation(ISSAC ’23). Association for Computing Machinery, New York, NY, USA, 218–226. https://doi.org/10.1145/3597066.3597090
[11]
Z. Huang, M. England, D. Wilson, J. H. Davenport, L. C. Paulson, and J. Bridge. 2014. Applying Machine Learning to the Problem of Choosing a Heuristic to Select the Variable Ordering for Cylindrical Algebraic Decomposition. In Intelligent Computer Mathematics. Springer International Publishing, Cham, 92–107. https://doi.org/10.1007/978-3-319-08434-3_8
[12]
D. Lazard. 2010. CAD and Topology of Semi-Algebraic Sets. Math. Comput. Sci. 4, 1 (2010), 93–112. https://doi.org/10.1007/S11786-010-0047-0
[13]
A. Locatelli. 2016. On the regularity of cylindrical algebraic decompositions. PhD Thesis. University of Bath.
[14]
S. McCallum. 1998. An Improved Projection Operation for Cylindrical Algebraic Decomposition. In Quantifier Elimination and Cylindrical Algebraic Decomposition, Bob F. Caviness and Jeremy R. Johnson (Eds.). Springer Vienna, Vienna, 242–268. https://doi.org/10.1007/978-3-7091-9459-1_12
[15]
J. T. Schwartz and M. Sharir. 1983. On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics 4, 3 (1983), 298–351. https://doi.org/10.1016/0196-8858(83)90014-3
[16]
D. Wilson. 2014. Advances in Cylindrical Algebraic Decomposition. PhD Thesis. University of Bath.

Index Terms

  1. On Minimal and Minimum Cylindrical Algebraic Decompositions

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '24: Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation
    July 2024
    470 pages
    ISBN:9798400706967
    DOI:10.1145/3666000
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 16 July 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Semi-algebraic set
    2. abstract reduction system
    3. cylindrical algebraic decomposition
    4. minimal and minimum element
    5. partially ordered set

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    • FNRS-DFG

    Conference

    ISSAC '24
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 38
      Total Downloads
    • Downloads (Last 12 months)38
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 30 Jan 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media