Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3675094.3678463acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

Magnitude and Rotation Invariant Detection of Transportation Modes with Missing Data Modalities

Published: 05 October 2024 Publication History

Abstract

This work presents the solution of the Signal Sleuths team for the 2024 SHL recognition challenge. The challenge involves detecting transportation modes using shuffled, non-overlapping 5-second windows of phone movement data, with exactly one of the three available modalities (accelerometer, gyroscope, magnetometer) randomly missing. Data analysis indicated a significant distribution shift between train and validation data, necessitating a magnitude and rotation-invariant approach. We utilize traditional machine learning, focusing on robust processing, feature extraction, and rotation-invariant aggregation. An ablation study showed that relying solely on the frequently used signal magnitude vector results in the poorest performance. Conversely, our proposed rotation-invariant aggregation demonstrated substantial improvement over using rotation-aware features, while also reducing the feature vector length. Moreover, z-normalization proved crucial for creating robust spectral features.

References

[1]
Mirza Mansoor Baig, Hamid GholamHosseini, Aasia A. Moqeem, Farhaan Mirza, and Maria Lindén. 2017. A Systematic Review of Wearable Patient Monitoring Systems -- Current Challenges and Opportunities for Clinical Adoption. Journal of Medical Systems, Vol. 41, 7 (July 2017), 115. https://doi.org/10.1007/s10916-017-0760--1
[2]
Hristijan Gjoreski, Mathias Ciliberto, Lin Wang, Francisco Javier Ordonez Morales, Sami Mekki, Stefan Valentin, and Daniel Roggen. 2018. The University of Sussex-Huawei Locomotion and Transportation Dataset for Multimodal Analytics With Mobile Devices. IEEE Access, Vol. 6 (2018), 42592--42604.
[3]
Charles R. Harris, K. Jarrod Millman, Stéfan J. Van Der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. Van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández Del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array programming with NumPy. Nature, Vol. 585, 7825 (Sept. 2020), 357--362.
[4]
Subhas Chandra Mukhopadhyay. 2015. Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sensors Journal, Vol. 15, 3 (2015), 1321--1330.
[5]
Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. 2018. CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, Vol. 31 (2018).
[6]
Vallat Rafael. 2018. Antropy: time-efficient algorithms for computing the complexity of time-series. https://github.com/raphaelvallat/antropy.
[7]
Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Srivastava. 2010. Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw., Vol. 6, 2, Article 13 (mar 2010), 27 pages.
[8]
Marija Stojchevska, Mathias De Brouwer, Martijn Courteaux, Bram Steenwinckel, Sofie Van Hoecke, and Femke Ongenae. 2024. Unlocking the potential of smartphone and ambient sensors for ADL detection. Scientific Reports, Vol. 14, 1 (2024).
[9]
Jonas Van Der Donckt, Mathias De Brouwer, Pieter Moens, Marija Stojchevska, Bram Steenwinckel, Stef Pletinck, Nicolas Vandenbussche, Annelis Goris, Koen Paemeleire, Femke Ongenae, et al. 2022. From self-reporting to monitoring for improved migraine management. In Engineer meets Physician (EmP).
[10]
Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost, and Sofie Van Hoecke. 2022. Plotly-Resampler: Effective Visual Analytics for Large Time Series. In 2022 IEEE Visualization and Visual Analytics (VIS). IEEE, Oklahoma City, OK, USA, 21--25. https://doi.org/10.1109/VIS54862.2022.00013
[11]
Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost, and Sofie Van Hoecke. 2022. tsflex: Flexible time series processing & feature extraction. SoftwareX, Vol. 17 (Jan. 2022), 100971. https://doi.org/10.1016/j.softx.2021.100971
[12]
Jeroen Van Der Donckt, Jonas Van Der Donckt, Emiel Deprost, Nicolas Vandenbussche, Michael Rademaker, Gilles Vandewiele, and Sofie Van Hoecke. 2023. Do not sleep on traditional machine learning: Simple and interpretable techniques are competitive to deep learning for sleep scoring. Biomedical Signal Processing and Control, Vol. 81 (2023), 104429.
[13]
Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, Vol. 17, 3 (2020), 261--272.
[14]
Lin Wang, Mathias Ciliberto, Hristijan Gjoreski, P. Lago, T. Okita, and Daniel Roggen. 2024. Summary of SHL challenge 2024: Motion sensor-based locomotion and transportation mode recognition in missing data scenario. Proceedings of the 2024 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2024 ACM International Symposium on Wearable Computers.
[15]
Lin Wang, Hristijan Gjoreski, Mathias Ciliberto, Sami Mekki, Stefan Valentin, and Daniel Roggen. 2018. Benchmarking the SHL Recognition Challenge with Classical and Deep-Learning Pipelines. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (Singapore, Singapore) (UbiComp '18). Association for Computing Machinery, New York, NY, USA, 1626--1635.
[16]
Lin Wang, Hristijan Gjoreski, Mathias Ciliberto, Sami Mekki, Stefan Valentin, and Daniel Roggen. 2019. Enabling Reproducible Research in Sensor-Based Transportation Mode Recognition With the Sussex-Huawei Dataset. IEEE Access, Vol. 7 (2019), 10870--10891. https://doi.org/10.1109/ACCESS.2019.2890793
[17]
Peter Widhalm, Maximilian Leodolter, and Norbert Brändle. 2018. Top in the Lab, Flop in the Field?: Evaluation of a Sensor-based Travel Activity Classifier with the SHL Dataset. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers. ACM, Singapore Singapore, 1479--1487.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
UbiComp '24: Companion of the 2024 on ACM International Joint Conference on Pervasive and Ubiquitous Computing
October 2024
1032 pages
ISBN:9798400710582
DOI:10.1145/3675094
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 October 2024

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. human locomotion
  2. machine learning
  3. multimodal sensors
  4. shl dataset

Qualifiers

  • Research-article

Funding Sources

Conference

UbiComp '24

Acceptance Rates

Overall Acceptance Rate 764 of 2,912 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 32
    Total Downloads
  • Downloads (Last 12 months)32
  • Downloads (Last 6 weeks)7
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media