TPSegmentDiff: An Enhanced Diffusion Model for Tactile Paving Image Segmentation
Abstract
1 Introduction
2 Related work
2.1 Image Segmentation
2.2 Diffusion Model
3 Background
4 TPSegmentDiff Method
Input: Image x0, ground truth gt, model parameters θ |
---|
Output: Trained model parameters θ |
Progress: |
1: while θ is not converged do: |
2: Get random t ∈ (0, 1000) |
3: Generate random noise εt ∼ N(0, I) |
4: Let \(x _ { t } = \sqrt { \overline{ \alpha } _ { t } } x _ { 0 } + \sqrt { 1 - \overline{ \alpha } _ { t } } \varepsilon _ { t } , x _ { i n , t } = x _ { t } \oplus g t\) |
5: t, xin, t → model(θ) → εout, t |
6: Compute loss(εt, εout, t) and update parameters θ |
7: return θ |
4.1 TPSegmentDiff Training
4.2 TPSegmentDiff Segmentation
Input: Model parameters θ, steps t, random noise xt, image ximg, DDIM flag, step lenth τ |
---|
Output: Segmentation mask x0 |
Progress: |
1: while t > 0 do |
2: \(x _ { i n , t } = x _ { i m g } \oplus x _ { t }\) |
3: t, xin, t → model(θ) → εt |
4: if DDIM: //TPSegmentDiff-DDIM Algorithm |
5: \(x _ { x - \tau } = \sqrt { \overline{\alpha _ { x - \tau }}} (x _ { t } - \sqrt { 1 - \overline{ \alpha } _ { t } } \varepsilon _ { t }) / \sqrt { \overline{\alpha }_ { t } } + \sqrt { 1 - \overline{ \alpha _ { x - \tau } }} \varepsilon _ { t }\) |
6: t ← t − τ |
7: else: //TPSegmentDiff-DDPM Algorithm |
8: \(x _ { t - 1 } = \left[ x _ { t } - (1 - \alpha _ { t } / \sqrt { 1 - \overline{ \alpha } _ { t } }) \right] / \sqrt { \alpha _ { t } } + \sqrt { 1 - \alpha _ { t } } z , z \sim N (0 , 1)\) |
9: t ← t − 1 |
10: return x0 |
4.3 TPSegmentDiff Voting Mechanism
5 Experiments
5.1 Model Training
5.2 Experimental analysis
Algorithm | Pic Time | FPS | Step Time |
---|---|---|---|
TPSegmentDiff-DDPM | 14.691 | 0.068 | 0.0146 |
TPSegmentDiff-DDIM | 0.590 | 1.693 | 0.0147 |
6 Summary
References
Index Terms
- TPSegmentDiff: An Enhanced Diffusion Model for Tactile Paving Image Segmentation
Recommendations
Multiregion Multiscale Image Segmentation with Anisotropic Diffusion
Pattern Recognition. ICPR International Workshops and ChallengesAbstractWe present a multiregion image segmentation approach which utilizes multiscale anisotropic diffusion based scale spaces. By combining powerful edge preserving anisotropic diffusion smoothing with isolevel set linking and merging, we obtain ...
DiffuseMorph: Unsupervised Deformable Image Registration Using Diffusion Model
Computer Vision – ECCV 2022AbstractDeformable image registration is one of the fundamental tasks in medical imaging. Classical registration algorithms usually require a high computational cost for iterative optimizations. Although deep-learning-based methods have been developed for ...
Normalized Gradient Vector Diffusion and Image Segmentation
ECCV '02: Proceedings of the 7th European Conference on Computer Vision-Part IIIIn this paper, we present an approach for image segmentation, based on the existing Active Snake Model and Watershed-based Region Merging. Our algorithm includes initial segmentation using Normalized Gradient Vector Diffusion (NGVD) and region merging ...
Comments
Information & Contributors
Information
Published In
Sponsors
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Poster
Funding Sources
- Shandong Provincial Natural Science Foundation
Conference
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 94Total Downloads
- Downloads (Last 12 months)94
- Downloads (Last 6 weeks)94
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in