Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey
Free access
Just Accepted

Visual Content Privacy Protection: A Survey

Online AM: 16 December 2024 Publication History

Abstract

Vision is the most important sense for people, and it is also one of the main ways of cognition. As a result, people tend to utilize visual content to capture and share their life experiences, which greatly facilitates the transfer of information. Meanwhile, it also increases the risk of privacy violations, e.g., an image or video can reveal different kinds of privacy-sensitive information. Scholars have persistently pursued the advancement of tailored privacy protection measures. Various surveys attempt to consolidate these efforts from specific viewpoints. Nevertheless, these surveys tend to focus on particular issues, scenarios, or technologies, hindering a comprehensive overview of existing solutions on a broader scale. In this survey, a framework that encompasses various concerns and solutions for visual privacy is proposed, which allows for a macro understanding of privacy concerns from a comprehensive level. It is based on the fact that privacy concerns have corresponding adversaries, and divides privacy protection into three categories, based on computer vision (CV) adversary, based on human vision (HV) adversary, and based on CV & HV adversary. For each category, we analyze the characteristics of the main approaches to privacy protection, and then systematically review representative solutions. Open challenges and future directions for visual privacy protection are also discussed.

References

[1]
Mary R Anderlik and Mark A Rothstein. 2001. Privacy and confidentiality of genetic information: what rules for the new science?Annu. Rev. Genomics Hum. Genet. 2, 1 (2001), 401–433.
[2]
Maungmaung Aprilpyone and Hitoshi Kiya. 2021. Block-Wise Image Transformation With Secret Key for Adversarially Robust Defense. IEEE Trans. Inf. Forensic Secur. 16 (2021), 2709–2723. https://doi.org/10.1109/TIFS.2021.3062977
[3]
Ifeoluwapo Aribilola, Mamoona Naveed Asghar, Nadia Kanwal, Martin Fleury, and Brian Lee. 2022. SecureCam: Selective Detection and Encryption enabled Application for Dynamic Camera Surveillance Videos. IEEE Trans. Consum. Electron., in press. (2022). https://doi.org/10.1109/TCE.2022.3228679
[4]
Long Bao and Yicong Zhou. 2015. Image encryption: Generating visually meaningful encrypted images. Inf. Sci. 324(2015), 197–207. https://doi.org/10.1016/j.ins.2015.06.049
[5]
Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009. PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing. ACM Trans. Graph. 28, 3, Article 24 (jul 2009), 11 pages. https://doi.org/10.1145/1531326.1531330
[6]
Dmitri Bitouk, Neeraj Kumar, Samreen Dhillon, Peter Belhumeur, and Shree K. Nayar. 2008. Face Swapping: Automatically Replacing Faces in Photographs. In ACM SIGGRAPH 2008 Papers. Article 39, 8 pages. https://doi.org/10.1145/1399504.1360638
[7]
Margherita Bonetto, Pavel Korshunov, Giovanni Ramponi, and Touradj Ebrahimi. 2015. Privacy in mini-drone based video surveillance. In IEEE Int. Conf. Workshops Autom. Face Gesture Recognit., Vol.  04. 1–6. https://doi.org/10.1109/FG.2015.7285023
[8]
Deivid Botina-Monsalve, Yannick Benezeth, and Johel Miteran. 2022. RTrPPG: An Ultra Light 3DCNN for Real-Time Remote Photoplethysmography. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. Workshops. 2146–2154.
[9]
T.E. Boult. 2005. PICO: Privacy through Invertible Cryptographic Obscuration. In Computer Vision for Interactive and Intelligent Environment (CVIIE’05). 27–38. https://doi.org/10.1109/CVIIE.2005.16
[10]
Karla Brkic, Ivan Sikiric, Tomislav Hrkac, and Zoran Kalafatic. 2017. I Know That Person: Generative Full Body and Face De-identification of People in Images. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. Workshops. 1319–1328. https://doi.org/10.1109/CVPRW.2017.173
[11]
Karla Brkić, Tomislav Hrkać, and Zoran Kalafatić. 2017. Protecting the privacy of humans in video sequences using a computer vision-based de-identification pipeline. Expert Syst. Appl. 87(2017), 41–55. https://doi.org/10.1016/j.eswa.2017.05.067
[12]
Matic Broz. 2023. Number of Photos (2023): Statistics, Facts, & Predictions. https://photutorial.com/photos-statistics/.
[13]
Yuxin Cao, Xi Xiao, Ruoxi Sun, Derui Wang, Minhui Xue, and Sheng Wen. 2023. StyleFool: Fooling Video Classification Systems via Style Transfer. In Proc. IEEE Symp. Secur. Privacy. 1631–1648. https://doi.org/10.1109/SP46215.2023.10179383
[14]
Constantino Álvarez Casado, Manuel Lage Cañellas, and Miguel Bordallo López. 2023. Depression Recognition using Remote Photoplethysmography from Facial Videos. IEEE Trans. Affect. Comput., in press. (2023). https://doi.org/10.1109/TAFFC.2023.3238641
[15]
Shih-Fu Chang, John R Smith, Mandis Beigi, and Ana Benitez. 1997. Visual information retrieval from large distributed online repositories. Commun. ACM 40, 12 (1997), 63–71.
[16]
Efstathios Chatzikyriakidis, Christos Papaioannidis, and Ioannis Pitas. 2019. Adversarial Face De-Identification. In Proc. Int. Conf. Image Process.684–688. https://doi.org/10.1109/ICIP.2019.8803803
[17]
Lu Chen, Jiao Sun, and Wei Xu. 2021. FAWA: Fast Adversarial Watermark Attack on Optical Character Recognition (OCR) Systems. In Machine Learning and Knowledge Discovery in Databases. 547–563.
[18]
Mingliang Chen, Xin Liao, and Min Wu. 2022. PulseEdit: Editing Physiological Signals in Facial Videos for Privacy Protection. IEEE Trans. Inf. Forensic Secur. 17 (2022), 457–471. https://doi.org/10.1109/TIFS.2022.3142993
[19]
Weixuan Chen and Rosalind W. Picard. 2017. Eliminating Physiological Information from Facial Videos. In Proc. - IEEE Int. Conf. Autom. Face Gesture Recognit.48–55. https://doi.org/10.1109/FG.2017.15
[20]
Valeriia Cherepanova, Micah Goldblum, Harrison Foley, Shiyuan Duan, John P Dickerson, Gavin Taylor, and Tom Goldstein. 2021. LowKey: Leveraging Adversarial Attacks to Protect Social Media Users from Facial Recognition. In Int. Conf. Learn. Represent. https://openreview.net/forum?id=hJmtwocEqzc
[21]
Kenta Chinomi, Naoko Nitta, Yoshimichi Ito, and Noboru Babaguchi. 2008. PriSurv: Privacy Protected Video Surveillance System Using Adaptive Visual Abstraction. In Advances in Multimedia Modeling, Shin’ichi Satoh, Frank Nack, and Minoru Etoh (Eds.). 144–154.
[22]
Roger Clarke. 1999. Internet Privacy Concerns Confirm the Case for Intervention. Commun. ACM 42, 2 (feb 1999), 60–67. https://doi.org/10.1145/293411.293475
[23]
Lorrie Faith Cranor and Simson Garfinkel. 2005. Security and usability: designing secure systems that people can use. ” O’Reilly Media, Inc.”.
[24]
Ishan Rajendrakumar Dave, Chen Chen, and Mubarak Shah. 2022. SPAct: Self-Supervised Privacy Preservation for Action Recognition. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.20164–20173.
[25]
Deepfakes. 2017. Faceswap. https://github.com/deepfakes/faceswap.
[26]
Ali Dehghantanha and Katrin Franke. 2014. Privacy-respecting digital investigation. In Annu. Int. Conf. Priv., Secur. Trust. 129–138. https://doi.org/10.1109/PST.2014.6890932
[27]
Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin Tong. 2020. Disentangled and Controllable Face Image Generation via 3D Imitative-Contrastive Learning. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
[28]
Prithviraj Dhar, Joshua Gleason, Aniket Roy, Carlos D. Castillo, and Rama Chellappa. 2021. PASS: Protected Attribute Suppression System for Mitigating Bias in Face Recognition. In Proc. IEEE Int. Conf. Comput. Vision. 15087–15096.
[29]
Ranjie Duan, Yuefeng Chen, Dantong Niu, Yun Yang, A. K. Qin, and Yuan He. 2021. AdvDrop: Adversarial Attack to DNNs by Dropping Information. In Proc. IEEE Int. Conf.Comput. Vision. 7506–7515.
[30]
FrÉdÉric Dufaux and Touradj Ebrahimi. 2008. Scrambling for Privacy Protection in Video Surveillance Systems. IEEE Trans. Circuits Syst. Video Technol. 18, 8 (2008), 1168–1174. https://doi.org/10.1109/TCSVT.2008.928225
[31]
Omar Elharrouss, Noor Almaadeed, Somaya Al-Maadeed, and Younes Akbari. 2020. Image inpainting: A review. Neural Process. Lett. 51(2020), 2007–2028.
[32]
Gamal Elkoumy, Stephan A. Fahrenkrog-Petersen, Mohammadreza Fani Sani, Agnes Koschmider, Felix Mannhardt, Saskia Nuñez Von Voigt, Majid Rafiei, and Leopold Von Waldthausen. 2021. Privacy and Confidentiality in Process Mining: Threats and Research Challenges. ACM Trans. Manage. Inf. Syst. 13, 1, Article 11(2021), 17 pages.
[33]
Ádám Erdélyi, Thomas Winkler, and Bernhard Rinner. 2014. Multi-Level Cartooning for Context-Aware Privacy Protection in Visual Sensor Networks. In MediaEval.
[34]
Ádám Erdélyi, Tibor Barát, Patrick Valet, Thomas Winkler, and Bernhard Rinner. 2014. Adaptive cartooning for privacy protection in camera networks. In IEEE Int. Conf. Adv. Video Signal-Based Surveill.44–49. https://doi.org/10.1109/AVSS.2014.6918642
[35]
Tao Fang, Yu Qi, and Gang Pan. 2020. Reconstructing Perceptive Images from Brain Activity by Shape-Semantic GAN. In Adv. neural inf. proces. syst., H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol.  33. Curran Associates, Inc., 13038–13048. https://proceedings.neurips.cc/paper/2020/file/9813b270ed0288e7c0388f0fd4ec68f5-Paper.pdf
[36]
Andrea Frome, German Cheung, Ahmad Abdulkader, Marco Zennaro, Bo Wu, Alessandro Bissacco, Hartwig Adam, Hartmut Neven, and Luc Vincent. 2009. Large-scale privacy protection in Google Street View. In Proc. IEEE Int. Conf. Comput. Vision. 2373–2380. https://doi.org/10.1109/ICCV.2009.5459413
[37]
Vijay Kumar B G, Jeyasri Subramanian, Varnith Chordia, Eugene Bart, Shaobo Fang, Kelly Guan, and Raja Bala. 2021. STRIVE: Scene Text Replacement in Videos. In Proc. IEEE Int. Conf. Comput. Vision. 14549–14558.
[38]
Timothy Gernand. 2022. Scanning iPhones to Save Children: Apple’s On-Device Hashing Algorithm Should Survive a Fourth Amendment Challenge. Dickinson Law Review (2017-Present) 127, 1 (2022), 307.
[39]
Helmut Gernsheim. 1977. The 150th anniversary of photography. Hist. Photogr. 1, 1 (1977), 3–8.
[40]
Richard J Gerrig, Philip G Zimbardo, Andrew J Campbell, Steven R Cumming, and Fiona J Wilkes. 2015. Psychology and life. Pearson Higher Education AU.
[41]
Xiuye Gu, Weixin Luo, Michael S. Ryoo, and Yong Jae Lee. 2020. Password-Conditioned Anonymization and Deanonymization with Face Identity Transformers. In Computer Vision – ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). 727–743.
[42]
Aayush Gupta, Ayush Jaiswal, Yue Wu, Vivek Yadav, and Pradeep Natarajan. 2021. Adversarial Mask Generation for Preserving Visual Privacy. In Proc. - IEEE Int. Conf. Autom. Face Gesture Recognit.1–5. https://doi.org/10.1109/FG52635.2021.9666933
[43]
Md Rezwan Hasan, Richard Guest, and Farzin Deravi. 2023. Presentation-Level Privacy Protection Techniques for Automated Face Recognition - A Survey. ACM Comput. Surv. (feb 2023). https://doi.org/10.1145/3583135 Just Accepted.
[44]
Rakibul Hasan, Eman Hassan, Yifang Li, Kelly Caine, David J. Crandall, Roberto Hoyle, and Apu Kapadia. 2018. Viewer Experience of Obscuring Scene Elements in Photos to Enhance Privacy. In Conf. Hum. Fact. Comput. Syst. Proc.1–13. https://doi.org/10.1145/3173574.3173621
[45]
Eman T. Hassan; Rakibul Hasan; Patrick Shaffer; David Crandall; Apu Kapadia. 2017. Cartooning for Enhanced Privacy in Lifelogging and Streaming Videos. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. Workshops.
[46]
Jianping He, Bin Liu, Deguang Kong, Xuan Bao, Na Wang, Hongxia Jin, and George Kesidis. 2016. PUPPIES: Transformation-Supported Personalized Privacy Preserving Partial Image Sharing. In Proc. - Annu. IEEE/IFIP Int. Conf. Dependable Syst. Networks. 359–370. https://doi.org/10.1109/DSN.2016.40
[47]
Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan, and Xilin Chen. 2019. AttGAN: Facial Attribute Editing by Only Changing What You Want. IEEE Trans. Image Process. 28, 11 (2019), 5464–5478. https://doi.org/10.1109/TIP.2019.2916751
[48]
David R. Hilbert. 1987. Color and Color Perception: A Study in Anthropocentric Realism. Csli Press.
[49]
Carlos Hinojosa, Juan Carlos Niebles, and Henry Arguello. 2021. Learning Privacy-Preserving Optics for Human Pose Estimation. In Proc. IEEE Int. Conf. Comput. Vision. 2573–2582.
[50]
Noelle J. Hum, Perrin E. Chamberlin, Brittany L. Hambright, Anne C. Portwood, Amanda C. Schat, and Jennifer L. Bevan. 2011. A picture is worth a thousand words: A content analysis of Facebook profile photographs. Comput. Hum. Behav. 27, 5 (2011), 1828–1833. https://doi.org/10.1016/j.chb.2011.04.003
[51]
Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. 2019. Adversarial Examples Are Not Bugs, They Are Features. In Adv. neural inf. proces. syst., Vol.  32. https://proceedings.neurips.cc/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
[52]
Jiazhen Ji, Huan Wang, Yuge Huang, Jiaxiang Wu, Xingkun Xu, Shouhong Ding, ShengChuan Zhang, Liujuan Cao, and Rongrong Ji. 2022. Privacy-Preserving Face Recognition with Learnable Privacy Budgets in Frequency Domain. In ECCV. 475–491.
[53]
Linxi Jiang, Xingjun Ma, Shaoxiang Chen, James Bailey, and Yu-Gang Jiang. 2019. Black-Box Adversarial Attacks on Video Recognition Models. In Proc. ACM Int. Conf. Multimed. (Nice, France) (MM ’19). 864–872. https://doi.org/10.1145/3343031.3351088
[54]
Minchul Kim, Anil K. Jain, and Xiaoming Liu. 2022. AdaFace: Quality Adaptive Margin for Face Recognition. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.18750–18759.
[55]
Peter Kok, Gijs Joost Brouwer, Marcel A.J. van Gerven, and Floris P. de Lange. 2013. Prior Expectations Bias Sensory Representations in Visual Cortex. J. Neurosci. 33, 41 (2013), 16275–16284. https://doi.org/10.1523/JNEUROSCI.0742-13.2013
[56]
Zhenzhong Kuang, Longbin Teng, Zhou Yu, Jun Yu, Jianping Fan, and Mingliang Xu. 2022. Delegate-Based Utility Preserving Synthesis for Pedestrian Image Anonymization. In Proc. ACM Int. Conf. Multimed.2314–2323. https://doi.org/10.1145/3503161.3548235
[57]
Anil Kunchala, Mélanie Bouroche, and Bianca Schoen-Phelan. 2023. Towards a Framework for Privacy-Preserving Pedestrian Analysis. In Proc. - IEEE/CVF Winter Conf. Appl. Comput. Vis.4370–4380.
[58]
Dong Li, Jiahui Wu, Junqing Le, Qingguo Lü, Xiaofeng Liao, and Tao Xiang. 2023. An Efficient Privacy-Preserving Ranked Multi-Keyword Retrieval for Multiple Data Owners in Outsourced Cloud. IEEE Trans. Serv. Comput., in press(2023). https://doi.org/10.1109/TSC.2023.3341799
[59]
Jiacheng Lin, Xianwen Dai, Ke Nai, Jin Yuan, Zhiyong Li, Xu Zhang, and Shutao Li. 2023. BRPPNet: Balanced privacy protection network for referring personal image privacy protection. Expert Syst. Appl. 233(2023), 120960. https://doi.org/10.1016/j.eswa.2023.120960
[60]
Yuan Lin, Shengjin Wang, Qian Lin, and Feng Tang. 2012. Face Swapping under Large Pose Variations: A 3D Model Based Approach. In Proc. IEEE Int. Conf. Multimedia Expo. 333–338. https://doi.org/10.1109/ICME.2012.26
[61]
Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai Lin. 2021. When Machine Learning Meets Privacy: A Survey and Outlook. ACM Comput. Surv. 54, 2, Article 31 (2021), 36 pages. https://doi.org/10.1145/3436755
[62]
Chi Liu, Tianqing Zhu, Jun Zhang, and Wanlei Zhou. 2023. Privacy Intelligence: A Survey on Image Privacy in Online Social Networks. ACM Comput. Surv. 55, 8, Article 161 (2023), 35 pages. https://doi.org/10.1145/3547299
[63]
Jixin Liu, Rong Tan, Guang Han, Ning Sun, and Sam Kwong. 2021. Privacy-Preserving In-Home Fall Detection Using Visual Shielding Sensing and Private Information-Embedding. IEEE Trans. Multimedia 23 (2021), 3684–3699. https://doi.org/10.1109/TMM.2020.3029904
[64]
Yujia Liu, Weiming Zhang, and Nenghai Yu. 2017. Protecting privacy in shared photos via adversarial examples based stealth. Secur. Commun. Netw. 2017 (2017).
[65]
Yin-Yin Low, Angeline Tanvy, Raphaël C.-W. Phan, and Xiaojun Chang. 2022. AdverFacial: Privacy-Preserving Universal Adversarial Perturbation Against Facial Micro-Expression Leakages. In IEEE Int. Conf. Acoust. Speech Signal Process. Proc.2754–2758. https://doi.org/10.1109/ICASSP43922.2022.9746848
[66]
Paul Marks. 2021. Can the Biases in Facial Recognition Be Fixed; Also, Should They?Commun. ACM 64, 3 (2021), 20–22. https://doi.org/10.1145/3446877
[67]
Iacopo Masi, Yue Wu, Tal Hassner, and Prem Natarajan. 2018. Deep Face Recognition: A Survey. In SIBGRAPI Conf. Graph., Patterns Images. 471–478. https://doi.org/10.1109/SIBGRAPI.2018.00067
[68]
Maxim Maximov, Ismail Elezi, and Laura Leal-Taixe. 2020. CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
[69]
Daniel McDuff. 2023. Camera Measurement of Physiological Vital Signs. ACM Comput. Surv. 55, 9, Article 176 (2023), 40 pages. https://doi.org/10.1145/3558518
[70]
Daniel McDuff and Ewa M. Nowara. 2021. “Warm Bodies”: A Post-Processing Technique for Animating Dynamic Blood Flow on Photos and Avatars. In Conf. Hum. Fact. Comput. Syst. Proc. Article 579, 9 pages. https://doi.org/10.1145/3411764.3445719
[71]
Blaž Meden, Peter Rot, Philipp Terhörst, Naser Damer, Arjan Kuijper, Walter J. Scheirer, Arun Ross, Peter Peer, and Vitomir Štruc. 2021. Privacy–Enhancing Face Biometrics: A Comprehensive Survey. IEEE Trans. Inf. Forensic Secur. 16 (2021), 4147–4183. https://doi.org/10.1109/TIFS.2021.3096024
[72]
Vahid Mirjalili, Sebastian Raschka, and Arun Ross. 2020. PrivacyNet: Semi-Adversarial Networks for Multi-Attribute Face Privacy. IEEE Trans. Image Process. 29 (2020), 9400–9412. https://doi.org/10.1109/TIP.2020.3024026
[73]
Vahid Mirjalili and Arun Ross. 2017. Soft biometric privacy: Retaining biometric utility of face images while perturbing gender. In IEEE Int. Jt. Conf. Biom.564–573. https://doi.org/10.1109/BTAS.2017.8272743
[74]
Dorota Mokrosinska. 2018. Privacy and autonomy: On some misconceptions concerning the political dimensions of privacy. Law Philos. 37, 2 (2018), 117–143.
[75]
Saleh Mosaddegh, Loic Simon, and Frédéric Jurie. 2015. Photorealistic Face De-Identification by Aggregating Donors’ Face Components. In Computer Vision – ACCV 2014. Cham, 159–174.
[76]
Toshiki Nakamura, Anna Zhu, Keiji Yanai, and Seiichi Uchida. 2017. Scene Text Eraser. In Proc. Int. Conf. Doc. Anal. Recognit., Vol.  01. 832–837. https://doi.org/10.1109/ICDAR.2017.141
[77]
Sophie J Nightingale, Kimberley A Wade, and Derrick G Watson. 2017. Can people identify original and manipulated photos of real-world scenes?Cogn. Res. 2, 1 (2017), 1–21.
[78]
Yuval Nirkin, Yosi Keller, and Tal Hassner. 2019. FSGAN: Subject Agnostic Face Swapping and Reenactment. In Proc. IEEE Int. Conf. Comput. Vision.
[79]
Kieron O’Hara. 2016. The Seven Veils of Privacy. IEEE Internet Comput. 20, 2 (2016), 86–91. https://doi.org/10.1109/MIC.2016.34
[80]
Tribhuvanesh Orekondy, Mario Fritz, and Bernt Schiele. 2018. Connecting Pixels to Privacy and Utility: Automatic Redaction of Private Information in Images. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
[81]
Dailé Osorio-Roig, Christian Rathgeb, Pawel Drozdowski, Philipp Terhörst, Vitomir Štruc, and Christoph Busch. 2022. An Attack on Facial Soft-Biometric Privacy Enhancement. IEEE trans. biom. behav. identity sci. 4, 2 (2022), 263–275. https://doi.org/10.1109/TBIOM.2022.3172724
[82]
José Ramón Padilla-López, Alexandros Andre Chaaraoui, and Francisco Flórez-Revuelta. 2015. Visual privacy protection methods: A survey. Expert Syst. Appl. 42, 9 (2015), 4177–4195.
[83]
JithendraK Paruchuri, Sen-chingS Cheung, and MichaelW Hail. 2009. Video data hiding for managing privacy information in surveillance systems. EURASIP J. Inf. Secur. 2009, 1 (2009), 1–18.
[84]
Constantinos Patsakis, Athanasios Zigomitros, Achilleas Papageorgiou, and Agusti Solanas. 2015. Privacy and Security for Multimedia Content shared on OSNs: Issues and Countermeasures. Comput. J. 58, 4 (2015), 518–535. https://doi.org/10.1093/comjnl/bxu066
[85]
Wen Qi and Hang Su. 2022. A Cybertwin Based Multimodal Network for ECG Patterns Monitoring Using Deep Learning. IEEE Trans. Ind. Inform. 18, 10 (2022), 6663–6670. https://doi.org/10.1109/TII.2022.3159583
[86]
Arezoo Rajabi, Rakesh B Bobba, Mike Rosulek, Charles Wright, and Wu-chi Feng. 2021. On the (im) practicality of adversarial perturbation for image privacy. Proceedings on Privacy Enhancing Technologies (2021).
[87]
Allison Reed. 2021. Visual Content vs Text Content – Epic Face-off with Obvious Winner. https://www.motocms.com/blog/en/visual-content-vs-text-content/.
[88]
Yurui Ren, Ge Li, Yuanqi Chen, Thomas H. Li, and Shan Liu. 2021. PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering. In Proc. IEEE Int. Conf. Comput. Vision. 13759–13768.
[89]
Slobodan Ribaric, Aladdin Ariyaeeinia, and Nikola Pavesic. 2016. De-identification for privacy protection in multimedia content: A survey. Signal Process.-Image Commun. 47 (2016), 131–151. https://doi.org/10.1016/j.image.2016.05.020
[90]
Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In MICCAI. 234–241.
[91]
Prasun Roy, Saumik Bhattacharya, Subhankar Ghosh, and Umapada Pal. 2020. STEFANN: Scene Text Editor Using Font Adaptive Neural Network. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
[92]
Michael Ryoo, Brandon Rothrock, Charles Fleming, and Hyun Jong Yang. 2017. Privacy-Preserving Human Activity Recognition from Extreme Low Resolution. Proc. AAAI Conf. Artif. Intell. 31, 1 (Feb. 2017). https://doi.org/10.1609/aaai.v31i1.11233
[93]
Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge Computing: Vision and Challenges. IEEE Internet Things J. 3, 5 (2016), 637–646. https://doi.org/10.1109/JIOT.2016.2579198
[94]
Robert L Solso, M Kimberly MacLin, and Otto H MacLin. 2005. Cognitive psychology. Pearson Education New Zealand.
[95]
Sarah Spiekermann and Lorrie Faith Cranor. 2009. Engineering Privacy. IEEE Trans. Softw. Eng. 35, 1 (2009), 67–82. https://doi.org/10.1109/TSE.2008.88
[96]
Jingxiang Sun, Xuan Wang, Yichun Shi, Lizhen Wang, Jue Wang, and Yebin Liu. 2022. IDE-3D: Interactive Disentangled Editing for High-Resolution 3D-Aware Portrait Synthesis. ACM Trans. Graph. 41, 6, Article 270 (nov 2022), 10 pages. https://doi.org/10.1145/3550454.3555506
[97]
Yuanyi Sun, Sencun Zhu, and Yu Chen. 2022. ZoomP 3: Privacy-Preserving Publishing of Online Video Conference Recordings. In Proceedings on Privacy Enhancing Technologies. 630–649.
[98]
Zhaodong Sun and Xiaobai Li. 2022. Privacy-Phys: Facial Video-Based Physiological Modification for Privacy Protection. IEEE Signal Process. Lett. 29 (2022), 1507–1511. https://doi.org/10.1109/LSP.2022.3185964
[99]
Kimia Tajik, Akshith Gunasekaran, Rhea Dutta, Brandon Ellis, Rakesh B Bobba, Mike Rosulek, Charles V Wright, and Wu-chi Feng. 2019. Balancing Image Privacy and Usability with Thumbnail-Preserving Encryption. In Proc. Symp. Netw. Distrib. Syst. Secur.,.
[100]
Judith Jarvis Thomson. 1975. The Right to Privacy. Philos. Public Aff. 4, 4 (1975), 295–314. http://www.jstor.org/stable/2265075
[101]
Minh Tran, Taylan Sen, Kurtis Haut, Mohammad Rafayet Ali, and Ehsan Hoque. 2022. Are You Really Looking at Me? A Feature-Extraction Framework for Estimating Interpersonal Eye Gaze From Conventional Video. IEEE Trans. Affect. Comput. 13, 2 (2022), 912–925. https://doi.org/10.1109/TAFFC.2020.2979440
[102]
Osman Tursun, Rui Zeng, Simon Denman, Sabesan Sivapalan, Sridha Sridharan, and Clinton Fookes. 2019. MTRNet: A Generic Scene Text Eraser. In Proc. Int. Conf. Doc. Anal. Recognit.39–44. https://doi.org/10.1109/ICDAR.2019.00016
[103]
Ries Uittenbogaard, Clint Sebastian, Julien Vijverberg, Bas Boom, Dariu M. Gavrila, and Peter H.N. de With. 2019. Privacy Protection in Street-View Panoramas Using Depth and Multi-View Imagery. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
[104]
Paul Voigt and Axel Von dem Bussche. 2017. The EU General Data Protection Regulation (GDPR). A Practical Guide, 1st Ed., Cham: Springer International Publishing 10, 3152676(2017), 10–5555.
[105]
Hui-Po Wang, Tribhuvanesh Orekondy, and Mario Fritz. 2021. InfoScrub: Towards Attribute Privacy by Targeted Obfuscation. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. Workshops. 3281–3289.
[106]
Tian Wang, Jiyuan Zhou, Xinlei Chen, Guojun Wang, Anfeng Liu, and Yang Liu. 2018. A Three-Layer Privacy Preserving Cloud Storage Scheme Based on Computational Intelligence in Fog Computing. IEEE Trans. Emerg. Top. Comput. Intell. 2, 1 (2018), 3–12. https://doi.org/10.1109/TETCI.2017.2764109
[107]
Xiaobing Wang, Yingying Jiang, Zhenbo Luo, Cheng-Lin Liu, Hyunsoo Choi, and Sungjin Kim. 2019. Arbitrary Shape Scene Text Detection With Adaptive Text Region Representation. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
[108]
Zihao W. Wang, Vibhav Vineet, Francesco Pittaluga, Sudipta N. Sinha, Oliver Cossairt, and Sing Bing Kang. 2019. Privacy-Preserving Action Recognition Using Coded Aperture Videos. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. Workshops.
[109]
Yunqian Wen, Bo Liu, Ming Ding, Rong Xie, and Li Song. 2022. IdentityDP: Differential private identification protection for face images. Neurocomputing 501(2022), 197–211. https://doi.org/10.1016/j.neucom.2022.06.039
[110]
Thomas Winkler and Bernhard Rinner. 2014. Security and Privacy Protection in Visual Sensor Networks: A Survey. ACM Comput. Surv. 47, 1, Article 2 (2014), 42 pages.
[111]
Charles V. Wright, Wu-chi Feng, and Feng Liu. 2015. Thumbnail-Preserving Encryption for JPEG. In Proc. ACM Workshop Inf. Hiding Multimedia Secur.141–146. https://doi.org/10.1145/2756601.2756618
[112]
Hao Wu, Xuejin Tian, Yuhang Gong, Xing Su, Minghao Li, and Fengyuan Xu. 2021. DAPter: Preventing User Data Abuse in Deep Learning Inference Services. In Companion Proc. Web Conf.1017–1028. https://doi.org/10.1145/3442381.3449907
[113]
Hao Wu, Xuejin Tian, Minghao Li, Yunxin Liu, Ganesh Ananthanarayanan, Fengyuan Xu, and Sheng Zhong. 2021. PECAM: Privacy-Enhanced Video Streaming and Analytics via Securely-Reversible Transformation. In Proc. Annu. Int. Conf. Mobile Comput. Networking. 229–241. https://doi.org/10.1145/3447993.3448618
[114]
Zongda Wu, Guiling Li, Shigen Shen, Xinze Lian, Enhong Chen, and Guandong Xu. 2021. Constructing dummy query sequences to protect location privacy and query privacy in location-based services. World Wide Web 24(2021), 25–49.
[115]
Zhenyu Wu, Haotao Wang, Zhaowen Wang, Hailin Jin, and Zhangyang Wang. 2022. Privacy-Preserving Deep Action Recognition: An Adversarial Learning Framework and A New Dataset. IEEE Trans. Pattern Anal. Mach. Intell. 44, 4 (2022), 2126–2139. https://doi.org/10.1109/TPAMI.2020.3026709
[116]
Zhenyu Wu, Zhangyang Wang, Zhaowen Wang, and Hailin Jin. 2018. Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study. In ECCV.
[117]
Wanxin Xu, Sen-ching Samson Cheung, and Neelkamal Soares. 2015. Affect-preserving privacy protection of video. In Proc. Int. Conf. Image Process.158–162. https://doi.org/10.1109/ICIP.2015.7350779
[118]
Xing Xu, Jiefu Chen, Jinhui Xiao, Lianli Gao, Fumin Shen, and Heng Tao Shen. 2020. What Machines See Is Not What They Get: Fooling Scene Text Recognition Models With Adversarial Text Images. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
[119]
Yikun Xu, Pengwen Dai, Zekun Li, Hongjun Wang, and Xiaochun Cao. 2023. The Best Protection Is Attack: Fooling Scene Text Recognition with Minimal Pixels. IEEE Trans. Inf. Forensic Secur., in press. (2023). https://doi.org/10.1109/TIFS.2023.3245984
[120]
Hanyu Xue, Bo Liu, Ming Din, Li Song, and Tianqing Zhu. 2020. Hiding Private Information in Images From AI. In IEEE Int. Conf. Commun.1–6. https://doi.org/10.1109/ICC40277.2020.9148656
[121]
Zhaoyi Yan, Xiaoming Li, Mu Li, Wangmeng Zuo, and Shiguang Shan. 2018. Shift-Net: Image Inpainting via Deep Feature Rearrangement. In ECCV.
[122]
Yahan Yang, Junfeng Lyu, Ruixin Wang, Quan Wen, Lanqin Zhao, Wenben Chen, Shaowei Bi, Jie Meng, Keli Mao, Yu Xiao, et al. 2022. A digital mask to safeguard patient privacy. Nat. Med. 28, 9 (2022), 1883–1892.
[123]
Ying Yang, Tao Xiang, Xiao Lv, Shangwei Guo, and Tieyong Zeng. 2023. The Illusion of Visual Security: Reconstructing Perceptually Encrypted Images. IEEE Trans. Circuits Syst. Video Technol., in press (2023). https://doi.org/10.1109/TCSVT.2023.3325906
[124]
Ze Yang, Haofei Wang, and Feng Lu. 2022. Assessment of Deep Learning-Based Heart Rate Estimation Using Remote Photoplethysmography Under Different Illuminations. IEEE T. Hum.-Mach. Syst. 52, 6 (2022), 1236–1246. https://doi.org/10.1109/THMS.2022.3207755
[125]
Mengmei Ye, Zhongze Tang, Huy Phan, Yi Xie, Bo Yuan, and Sheng Wei. 2022. Visual Privacy Protection in Mobile Image Recognition Using Protective Perturbation. In Proc. ACM Multimed. Syst. Conf.164–176. https://doi.org/10.1145/3524273.3528189
[126]
Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. 2019. A Fourier Perspective on Model Robustness in Computer Vision. In Adv. neural inf. proces. syst., Vol.  32.
[127]
Jinao Yu, Hanyu Xue, Bo Liu, Yu Wang, Shibing Zhu, and Ming Ding. 2021. GAN-Based Differential Private Image Privacy Protection Framework for the Internet of Multimedia Things. Sensors 21, 1 (2021). https://doi.org/10.3390/s21010058
[128]
Xiaoyong Yuan, Pan He, Xiaolin Lit, and Dapeng Wu. 2020. Adaptive Adversarial Attack on Scene Text Recognition. In IEEE Conf. Comput. Commun. Workshops. 358–363. https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162685
[129]
Yong Zeng, Jiale Liu, Tong Dong, Qingqi Pei, Jianfeng Ma, and Yao Liu. 2024. Eyes See Hazy while Algorithms Recognize Who You Are. ACM Trans. Priv. Secur. 27, 1, Article 7(jan 2024), 23 pages.
[130]
Liming Zhai, Qing Guo, Xiaofei Xie, Lei Ma, Yi Estelle Wang, and Yang Liu. 2022. A3GAN: Attribute-Aware Anonymization Networks for Face De-Identification. In Proc. ACM Int. Conf. Multimed.5303–5313. https://doi.org/10.1145/3503161.3547757
[131]
Yushu Zhang, Xi Ye, Xiangli Xiao, Tao Xiang, Hongwei Li, and Xiaochun Cao. 2023. A Reversible Framework for Efficient and Secure Visual Privacy Protection. IEEE Trans. Inf. Forensic Secur. 18 (2023), 3334–3349. https://doi.org/10.1109/TIFS.2023.3280341
[132]
Yushu Zhang, Ruoyu Zhao, Xiangli Xiao, Rushi Lan, Zhe Liu, and Xinpeng Zhang. 2022. HF-TPE: High-Fidelity Thumbnail- Preserving Encryption. IEEE Trans. Circuits Syst. Video Technol. 32, 3 (2022), 947–961. https://doi.org/10.1109/TCSVT.2021.3070348
[133]
Ruoyu Zhao, Yushu Zhang, Yu Nan, Wenying Wen, Xiuli Chai, and Rushi Lan. 2022. Primitively visually meaningful image encryption: A new paradigm. Inf. Sci. 613(2022), 628–648. https://doi.org/10.1016/j.ins.2022.08.027
[134]
Ying Zhao and Jinjun Chen. 2022. A Survey on Differential Privacy for Unstructured Data Content. ACM Comput. Surv. 54, 10s, Article 207 (sep 2022), 28 pages. https://doi.org/10.1145/3490237
[135]
Yiqin Zhao, Sheng Wei, and Tian Guo. 2022. Privacy-preserving Reflection Rendering for Augmented Reality. In Proc. ACM Int. Conf. Multimed.2909–2918. https://doi.org/10.1145/3503161.3548386
[136]
Yaoyao Zhong and Weihong Deng. 2023. OPOM: Customized Invisible Cloak Towards Face Privacy Protection. IEEE Trans. Pattern Anal. Mach. Intell. 45, 3 (2023), 3590–3603. https://doi.org/10.1109/TPAMI.2022.3175602
[137]
Jizhe Zhou and Chi-Man Pun. 2021. Personal Privacy Protection via Irrelevant Faces Tracking and Pixelation in Video Live Streaming. IEEE Trans. Inf. Forensic Secur. 16 (2021), 1088–1103. https://doi.org/10.1109/TIFS.2020.3029913
[138]
Bingquan Zhu, Hao Fang, Yanan Sui, and Luming Li. 2020. Deepfakes for Medical Video De-Identification: Privacy Protection and Diagnostic Information Preservation. In Proc. AAAI/ACM Conf. AI, Ethics, Soc.414–420. https://doi.org/10.1145/3375627.3375849
[139]
Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks. In Proc. IEEE Int. Conf. Comput. Vision.
[140]
Zheng Zhu, Xianda Guo, Tian Yang, Junjie Huang, Jiankang Deng, Guan Huang, Dalong Du, Jiwen Lu, and Jie Zhou. 2021. Gait Recognition in the Wild: A Benchmark. In Proc. IEEE Int. Conf. Comput. Vision. 14789–14799.
[141]
Chengming Zou, Ducheng Yuan, Long Lan, and Haoang Chi. 2022. Privacy-Preserving Action Recognition. In IEEE Int. Conf. Acoust. Speech. Signal Process. Proc.2175–2179. https://doi.org/10.1109/ICASSP43922.2022.9747456

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys Just Accepted
EISSN:1557-7341
Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Online AM: 16 December 2024
Accepted: 23 November 2024
Revised: 01 April 2024
Received: 29 March 2023

Check for updates

Author Tags

  1. Privacy protection
  2. visual content
  3. computer vision
  4. human usability.

Qualifiers

  • Survey

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 166
    Total Downloads
  • Downloads (Last 12 months)166
  • Downloads (Last 6 weeks)166
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media