Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Planar point location for large data sets: to seek or not to seek

Published: 31 December 2002 Publication History

Abstract

We present an algorithm for external memory planar point location that is both effective and easy to implement. The base algorithm is an external memory variant of the bucket method by Edahiro, Kokubo and Asano that is combined with Lee and Yang's batched internal memory algorithm for planar point location. Although our algorithm is not optimal in terms of its worst-case behavior, we show its efficiency for both batched and single-shot queries by experiments with real-world data. The experiments show that the algorithm benefits from the mainly sequential disk access pattern and significantly outperforms the fastest algorithm for internal memory. Due to its simple concept, the algorithm can take advantage of multiple disks and processors in a rather straightforward yet efficient way.

Supplementary Material

PS File (p8-vahrenhold.ps)
TAR File (p8-vahrenhold.tex.tar)

References

[1]
ADAMY, U. AND SEIDEL, R. 1998. On the exact worst case query complexity of planar point location. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (1998), pp. 609-618. ACM Press.]]
[2]
AGARWAL, P. K., ARGE, L. A., BRODAL, G. S., AND VITTER, J. S. 1999. I/O-efficient dynamic point location in monotone planar subdivisions. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (1999), pp. 11-20. ACM Press.]]
[3]
AGGARWAL, A. AND VITTER, J. S. 1988. The input/output complexity of sorting and related problems. Communications of the ACM 31, 9, 1116-1127.]]
[4]
ARGE, L. A., BARVE, R. D., PROCOPIUC, O., TOMA, L. I., VENGROFF, D. E., AND WICKREMESINGHE, R. 1999. TPIE user manual and reference, edition 0.9.01a. Duke University, North Carolina, 〈http://www.cs.duke.edu/TPIE/〉. (accessed 12 Jul. 1999).]]
[5]
ARGE, L. A., PROCOPIUC, O., RAMASWAMY, S., SUEL, T., VAHRENHOLD, J., AND VITTER, J. S. 2000. A unified approach for indexed and non-indexed spatial joins. In C. ZANIOLO, P. C. LOCKEMANN, M. H. SCHOLL, AND T. GRUST Eds., Advances in Database Technology - Proceedings of the 7th International Conference on Extending Databases Technology (EDBT '00), Volume 1777 of Lecture Notes in Computer Science (Berlin, 2000), pp. 413-429. Springer.]]
[6]
ARGE, L. A. AND VAHRENHOLD, J. 2000. I/O-efficient dynamic planar point location. In Proceedings of the Sixteenth Annual Symposium on Computational Geometry (2000), pp. 191-200. ACM Press.]]
[7]
ARGE, L. A., VENGROFF, D. E., and VITTER, J. S. 1995. External-memory algorithms for processing line segments in geographic information systems. In P. SPIRAKIS Ed., Algorithms - ESA '95. Third Annual European Symposium, Volume 979 of Lecture Notes in Computer Science (1995), pp. 295-310. Springer.]]
[8]
BAUMANN, K. 1996. Implementierung und Vergleich von fünf Algorithmen zur Punktlokalisierung in Trapezoid-Zerlegungen (Implementation and comparison of five algorithms for point-location in trapezoidal decompositions). Master's thesis, Fachbereich Mathematik und Informatik, Westfälische Wilhelms-Universität Münster, Germany. (in German).]]
[9]
BRODAL, G. S. AND KATAJAINEN, J. 1998. Worst-case efficient external memory priority queues. In S. ARNBORG AND L. IVANSSON Eds., Algorithm Theory -- SWAT '98, 6th Scandinavian Workshop on Algorithm Theory, Volume 1432 of Lecture Notes in Computer Science (1998), pp. 107-118. Springer.]]
[10]
CHAZELLE, B. M. AND GUIBAS, L. J. 1986. Fractional cascading: I. A data structuring technique. Algorithmica 1, 2, 133-162.]]
[11]
CHIAND, Y.-J. 1998. Experiments on the practical I/O efficiency of geometric algorithms: Distribution sweep vs. plane sweep. Computational Geometry: Theory and Applications 9, 4 (March), 211-236. A preliminary version appeared in the Proceedings of the Fourth Workshop on Algorithms and Data Structures (1995), pages 346-357.]]
[12]
CRAUSER, A., FERRAGINA, P., MEHLHORN, K., MEYER, U., AND RAMOS, E. 2001. Randomized external-memory algorithms for some geometric problems. International Journal of Computational Geometry & Applications 11, 3 (June), 305-337. A preliminary version appeared in the Proceedings of the Fourteenth Symposium on Computational Geometry (1998), pages 259-268.]]
[13]
DR BERG, M., VAN KREVELD, M. J., OVERMARS, M. H., AND SCHWARZKOPF, O. 1997. Computational Geometry: Algorithms and Applications. Springer, Berlin.]]
[14]
DOBKIN, D. P. AND LIPTON, R. J. 1976. Multidimensional searching problems. SIAM Journal on Computing 5, 181-186.]]
[15]
EDAHIRO, M., KOKUBO, I., AND ASANO, T. 1984. A new point-location algorithm and its practical efficiency: Comparison with existing algorithms. ACM Transactions on Graphics 3, 2, 86-109.]]
[16]
EDELSBRUNNER, H., GUIBAS, L. J., AND STOLFI, J. 1986. Optimal point location in a monotone subdivision. SIAM Journal on Computing 15, 2, 317-340.]]
[17]
FRANKLIN, W. R. 1983. Adaptive grids for geometric operations. In Proceedings of the Sixth International Symposium on Automated Cartography (Auto-Carto Six), Volume 2 (1983), pp. 230-239.]]
[18]
GOODRICH, M. T., TSAY, J.-J., VENGROFF, D. E., AND VITTER, J. S. 1993. Externalmemory computational geometry. In Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS '93) (1993), pp. 714-723.]]
[19]
KIM, K. AND CHA, S. K. 1998. Sibling clustering of tree-based spatial indexes for efficient spatial query processing. In G. GARDARIN, J. C. FRENCH, N. PISSINOU, K. MAKKI, AND L. BOUGANIM Eds., Proceedings of the 1998 ACM CIKM International Conference on Information and Knowledge Management (1998), pp. 398-405. ACM Press.]]
[20]
KIRKPATRICK, D. G. 1983. Optimal search in planar subdivisions. SIAM Journal on Computing 12, 1, 28-35.]]
[21]
LEE, D.-T. AND YANG, C. C. 1979. Location of multiple points in a planar subdivision. Information Processing Letters 9, 4, 190-193.]]
[22]
LOUKIDES, M. 1990. System Performance Tuning. O'Reilly & Associates, Sebastopol, CA.]]
[23]
MULMULEY, K. 1994. Computational Geometry: An Introduction Through Randomized Algorithms . Prentice Hall, Englewood Cliffs, NJ.]]
[24]
MUSSER, D. R. AND SAINI, A. 1996. STL Tutorial and Reference Guide: C++ Programming with the Standard Template Library. Addison-Wesley, Reading, MA.]]
[25]
PREPARATA, F. P. AND SHAMOS, M. I. 1988. Computational Geometry: An Introduction (2nd ed.). Springer, Berlin.]]
[26]
SARNAK, N. I. AND TARJAN, R. E. 1986. Planar point location using persistent search trees. Communications of the ACM 29, 669-679.]]
[27]
Seagate Technology, Inc. 1999. ST34520W Configuration and Specifications. Scotts Valley, CA: Seagate Technology, Inc. Accessible via URL http://www.seagate.com/support/disc/ specs/st34520w.shtml (accessed 23 Aug. 1999).]]
[28]
SILBERSCHATZ, A. AND GALVIN, P. B. 1994. Operating Systems Concepts (Fourth ed.). Addison-Wesley, Reading, MA.]]
[29]
SNOEYINK, J. S. 1997. Point location. In Handbook of Discrete and Computational Geometry, Discrete Mathematics and its Applications, Chapter 30, pp. 559-574. Boca Raton, FL: CRC Press.]]
[30]
Sun Microsystems, Inc. 1995. SuperSPARCTM STP1020A Data Sheet. Palo Alto, CA: Sun Microsystems, Inc. Accessible via URL http://www.sun.com/microelectronics/ datasheets/stp1020a/ (accessed 19 Aug. 1999).]]
[31]
U.S. GEOLOGICAL SURVEY. 1989. Digital Line Graphs from 1:100,000-Scale Maps (second ed.). Reston, VA: U.S. Department of the Interior.]]
[32]
U.S. GEOLOGICAL SURVEY. 1996. 1:100,000-scale digital line graphs (DLG). Accessible via URL http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html (accessed 26 May 1999).]]
[33]
VENGROFF, D. E. 1994. A transparent parallel I/O environment. In Proceedings of the DAGS Symposium (1994).]]

Cited By

View all
  • (2018)I/O-efficient dynamic planar point locationComputational Geometry: Theory and Applications10.1016/j.comgeo.2003.04.00129:2(147-162)Online publication date: 29-Dec-2018
  • (2017)A Filter-and-Refinement-Algorithm for Range Queries Based on the Fréchet Distance (GIS Cup)Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/3139958.3140063(1-4)Online publication date: 7-Nov-2017
  • (2008)Algorithms and data structures for external memoryFoundations and Trends® in Theoretical Computer Science10.1561/04000000142:4(305-474)Online publication date: 1-Jan-2008

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Journal of Experimental Algorithmics
ACM Journal of Experimental Algorithmics  Volume 7, Issue
2002
218 pages
ISSN:1084-6654
EISSN:1084-6654
DOI:10.1145/944618
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 31 December 2002
Published in JEA Volume 7

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2018)I/O-efficient dynamic planar point locationComputational Geometry: Theory and Applications10.1016/j.comgeo.2003.04.00129:2(147-162)Online publication date: 29-Dec-2018
  • (2017)A Filter-and-Refinement-Algorithm for Range Queries Based on the Fréchet Distance (GIS Cup)Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/3139958.3140063(1-4)Online publication date: 7-Nov-2017
  • (2008)Algorithms and data structures for external memoryFoundations and Trends® in Theoretical Computer Science10.1561/04000000142:4(305-474)Online publication date: 1-Jan-2008

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media