Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Visual saliency on networks of neurosynaptic cores

Published: 01 March 2015 Publication History
  • Get Citation Alerts
  • Abstract

    Identifying interesting or salient regions in an image plays an important role for multimedia search, object tracking, active vision, segmentation, and classification. Existing saliency extraction algorithms are implemented using the conventional von Neumann computational model. We propose a bottom-up model of visual saliency, inspired by the primate visual cortex, which is compatible with TrueNorth-a low-power, brain-inspired neuromorphic substrate that runs large-scale spiking neural networks in real-time. Our model uses color, motion, luminance, and shape to identify salient regions in video sequences. For a three-color-channel video with 240 × 136 pixels per frame and 30 frames per second, we demonstrate a model utilizing ∼3 million neurons, which achieves competitive detection performance on a publicly available dataset while consuming ∼200 mW.

    References

    [1]
    J. K. Tsotsos, A Computational Perspective on Visual Attention. Cambridge, MA, USA: MIT Press, 2011.
    [2]
    S. W. Zucker, "Stereo, shading, surfaces: Curvature constraints couple neural computations," Proc. IEEE, vol. 102, no. 5, pp. 812-829, May 2014.
    [3]
    A. Andreopoulos and J. K. Tsotsos, "50 years of object recognition: Directions forward," Comput. Vis. Image Understanding, vol. 117, no. 8, pp. 827-891, Aug. 2013.
    [4]
    G. Cauwenberghs, "Reverse engineering the cognitive brain," Proc. Nat. Academy Sci., vol. 110, no. 39, pp. 15512-15513, Sep. 2013.
    [5]
    G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, "Neuromorphic silicon neuron circuits," Frontiers Neurosci., vol. 5, no. 73, May 2011.
    [6]
    E. Neftcia, J. Binasa, U. Rutishauserb, E. Chiccaa, G. Indiveria, and R. J. Douglas, "Synthesizing cognition in neuromorphic electronic systems," Proc. Nat. Academy Sci., vol. 110, no. 37, pp. E3468-E3476, Jun. 2013.
    [7]
    R. J. Vogelstein, U. Mallik, E. Culurciello, G. Cauwenberghs, and R. Etienne-Cummings, "Saliency-driven image acuity modulation on a reconfigurable array of spiking silicon neurons," in Proc. Adv. Neural Inf. Process. Syst., 2004, pp. 1457-1464.
    [8]
    R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, "Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses," IEEE Trans. Neural Netw., vol. 18, no. 1, pp. 253-265, Jan. 2007.
    [9]
    S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, "The SpiNNaker project," Proc. IEEE, vol. 102, no. 5, pp. 652-665, May 2014.
    [10]
    K. A. Zaghloul and K. Boahen, "A silicon retina that reproduces signals in the optic nerve," J. Neural Eng., vol. 3, no. 4, pp. 257-267, Dec. 2006.
    [11]
    L. Itti and C. Koch, "Computational modelling of visual attention," Nat. Rev. Neurosci., vol. 2, no. 3, pp. 194-203, Mar. 2001.
    [12]
    A. Treisman and G. Gelade, "A feature integration theory of attention," Cognitive Psychol., vol. 12, no. 1, pp. 97-136, Jan. 1980.
    [13]
    C. Koch and S. Ullman, "Shifts in selective visual attention: Towards the underlying neural circuitry," Human Neurobiol., vol. 4, no. 4, pp. 219-227, 1985.
    [14]
    L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE Trans. Pattern Analysis Mach. Intell., vol. 20, no. 11, pp. 1254-1259, Nov. 1998.
    [15]
    D. J. Berg, S. E. Boehnke, R. A. Marino, D. P. Munoz, and L. Itti, "Free viewing of dynamic stimuli by humans and monkeys," J. Vis., vol. 9, no. 5, p. 19, May 2009.
    [16]
    L. Itti, "Automatic foveation for video compression using a neurobiological model of visual attention," IEEE Trans. Image Process., vol. 13, no. 10, pp. 1304-1318, Oct. 2004.
    [17]
    T. Judd, K. Ehinger, F. Durand, and A. Torralba, "Learning to predict where humans look," in Proc. IEEE 12th Int. Conf. Comput. Vis., 2009, pp. 2106-2113.
    [18]
    P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, "A Million spiking-neuron integrated circuit with a scalable communication network and interface," Science, vol. 345, no. 6197, pp. 668-673, Aug. 2014.
    [19]
    A. Cassidy, R. Alvarez-Icaza, F. Akopyan, J. Sawada, J. V. Arthur, P. A. Merolla, P. Datta, M. Gonzalez Tallada, B. Taba, A. Andreopoulos, A. Amir, S. K. Esser, J. Kusnitz, R. Appuswamy, C. Haymes, B. Brezzo, R. Moussalli, R. Bellofatto, C. Baks, M. Mastro, K. Schleupen, C. E. Cox, K. Inoue, S. Millman, N. Imam, E. McQuinn, Y. Y. Nakamura, I. Vo, C. Guo, D. Nguyen, S. Lekuch, S. Asaad, D. Friedmann, B. L. Jackson, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, "Real-time scalable cortical computing at 46 giga-synaptic ops/watt with ∼100× speedup in time-to-solution and ∼100,000× reduction in energy-to-solution," in Int. Conf. High Perform. Comput., Netw., Storage Anal.--Supercomput., 2014, pp. 27-38.
    [20]
    A. S. Cassidy, P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson, R. A Icaza, P. Datta, J. Sawada, T. M. Wong, V. Feldman, A. Amir, D. Ben-Dayan Rubin, F. Akopyan, E. McQuinn, W. P. Risk, and D. S. Modha, "Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores," in Proc. IEEE Int. Joint Conf. Neural Netw., 2013, pp. 1-10.
    [21]
    S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch, A. Amir, J. Arthur, A. Cassidy, M. Flickner, P. Merolla, S. Chandra, N. Basilico, S. Carpin, T. Zimmerman, F. Zee, R. A. Icaza, J. A. Kusnitz, T. M. Wong, W. P. Risk, E. McQuinn, T. K. Nayak, R. Singh, and D. S. Modha, "Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores," in Proc. IEEE Int. Joint Conf. Neural Netw., 2013, pp. 1-10.
    [22]
    A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K. Esser, A. Andreopoulos, T. M. Wong, M. Flickner, R. A. Icaza, E. McQuinn, B. Shaw, N. Pass, and D. S. Modha, "Cognitive computing programming paradigm: A corelet language for composing networks of neurosynaptic cores," in Proc. IEEE Int. Joint Conf. Neural Netw., 2013, pp. 1-10.
    [23]
    G. S. Banavar, "An application framework for compositional modularity," Ph.D. Dissertation, Univ. Utah, Salt Lake City, UT, USA, 1995.
    [24]
    T. M. Wong, R. Preissl, P. Datta, M. Flickner, R. Singh, S. K. Esser, E. McQuinn, R. Appuswamy, W. P. Risk, H. D. Simon, and D. S. Modha, B1014," IBM Res. Div., Armonk, NY, USA, Res. Rep. RJ 10 502, 2012.
    [25]
    R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser, W. P. Risk, H. T. D. Simon, and D. S. Modha, "Compass: A scalable simulator for an architecture for cognitive computing," in Proc. IEEE Int. Conf. High Perform. Comput., Netw., Storage Anal. (SC), 2012, p. 54.
    [26]
    P. J. Burt, "Fast filter transform for image process.," Comput. Graph. Image Process., vol. 16, no. 1, pp. 20-51, May 1981.
    [27]
    D. H. Hubel, "The visual cortex of the brain," Sci. Amer., vol. 209, no. 5, pp. 54-62, 1963.
    [28]
    Neovision2 dataset-iLab-University of Southern California, Los Angeles, CA, USA. [Online]. Available: http://ilab.usc.edu/neo2/dataset/
    [29]
    R. Kasturi, D. Goldgof, R. Ekambaram, G. Pratt, E. Krotkov, D. D. Hackett, Y. Ran, Q. Zheng, R. Sharma, M. Anderson, M. Peot, M. Aguilar, D. Khosla, Y. Chen, K. Kim, L. Elazary, R. C. Voorhies, D. F. Parks, and L. Itti, "Performance evaluation of neuromorphic-vision object recognition algorithms," in Int. Conf. Pattern Recog., 2014, pp. 2401-2406.
    [30]
    B. Shaw, A. Cox, P. Besterman, J. Minyard, C. Sassano, R. A. Icaza, A. Andreopoulos, R. Appuswamy, A. Cassidy, S. Chandra, P. Datta, E. Mcquinn, W. Risk, and D. S. Modha, "Cognitive computing commercialization: Boundary objects for communication," in Proc. Int. Conf. IDEMI, Porto, Portugal, Sep. 4-6, 2013, pp. 1-10.
    [31]
    J. M. Wolfe and T. S. Horowitz, "What attributes guide the deployment of visual attention and how do they do it?" Nat. Rev. Neurosci., vol. 5, no. 6, pp. 1-7, Jun. 2004.

    Cited By

    View all
    • (2017)Always-On Speech Recognition Using TrueNorth, a Reconfigurable, Neurosynaptic ProcessorIEEE Transactions on Computers10.1109/TC.2016.263068366:6(996-1007)Online publication date: 1-Jun-2017
    • (2015)TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic ChipIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2015.247439634:10(1537-1557)Online publication date: 1-Oct-2015

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image IBM Journal of Research and Development
    IBM Journal of Research and Development  Volume 59, Issue 2-3
    March/May 2015
    204 pages
    ISSN:0018-8646
    • Editors:
    • Aya Soffer,
    • Hui Su
    Issue’s Table of Contents

    Publisher

    IBM Corp.

    United States

    Publication History

    Published: 01 March 2015
    Received: 01 May 2014

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 11 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2017)Always-On Speech Recognition Using TrueNorth, a Reconfigurable, Neurosynaptic ProcessorIEEE Transactions on Computers10.1109/TC.2016.263068366:6(996-1007)Online publication date: 1-Jun-2017
    • (2015)TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic ChipIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2015.247439634:10(1537-1557)Online publication date: 1-Oct-2015

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media