Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

An Energy-Efficient Silicon Photonic-Assisted Deep Learning Accelerator for Big Data

Published: 01 January 2020 Publication History
  • Get Citation Alerts
  • Abstract

    Deep learning has become the most mainstream technology in artificial intelligence (AI) because it can be comparable to human performance in complex tasks. However, in the era of big data, the ever-increasing data volume and model scale makes deep learning require mighty computing power and acceptable energy costs. For electrical chips, including most deep learning accelerators, transistor performance limitations make it challenging to meet computing’s energy efficiency requirements. Silicon photonic devices are expected to replace transistors and become the mainstream components in computing architecture due to their advantages, such as low energy consumption, large bandwidth, and high speed. Therefore, we propose a silicon photonic-assisted deep learning accelerator for big data. The accelerator uses microring resonators (MRs) to form a photonic multiplication array. It combines photonic-specific wavelength division multiplexing (WDM) technology to achieve multiple parallel calculations of input feature maps and convolution kernels at the speed of light, providing the promise of energy efficiency and calculation speed improvement. The proposed accelerator achieves at least a 75x improvement in computational efficiency compared to the traditional electrical design.

    References

    [1]
    J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,” Journal of Big Data, vol. 6, no. 1, p. 27, 2019.
    [2]
    Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: a survey,” IEEE Transactions on Knowledge and Data Engineering, p. 1, 2020.
    [3]
    X. Wang, Z. Ning, and S. Guo, “Multi-agent imitation learning for pervasive edge computing: a decentralized computation offloading algorithm,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp. 411–425, 2021.
    [4]
    J. Chen and X. Ran, “Deep learning with edge computing: a review,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.
    [5]
    X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning enabled task scheduling for online vehicular edge computing,” IEEE Transactions on Mobile Computing, p. 1, 2020.
    [6]
    Z. Q. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with deep learning: a review,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 11, pp. 3212–3232, 2019.
    [7]
    Z. Ning, R. Y. K. Kwok, K. Zhang, X. Wang, M. S. Obaidat, L. Guo, X. Hu, B. Hu, Y. Guo, and B. Sadoun, “Joint computing and caching in 5G-envisioned internet of vehicles: a deep reinforcement learning based traffic control system,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–12, 2020.
    [8]
    H. Li, K. Ota, and M. Dong, “Learning IoT in edge: deep learning for the internet of things with edge computing,” IEEE Network, vol. 32, no. 1, pp. 96–101, 2018.
    [9]
    Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and R. Y. K. Kwok, “Intelligent edge computing in internet of vehicles: a joint computation offloading and caching solution,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–14, 2020.
    [10]
    S. Huang, C. Yang, S. Yin, Z. Zhang, and Y. Chu, “Latency-aware task peer offloading on overloaded server in multi-access edge computing system interconnected by metro optical networks,” IEEE/OSA Journal of Lightwave Technology, vol. 38, no. 21, pp. 5949–5961, 2020.
    [11]
    Z. Ning, P. Dong, X. Wang, X. Hu, L. Guo, B. Hu, Y. Guo, T. Qiu, and R. Y. K. Kwok, “Mobile edge computing enabled 5G health monitoring for internet of medical things: a decentralized game theoretic approach,” IEEE Journal on Selected Areas in Communications, To Appear, pp. 1–6, 2020.
    [12]
    Z. Ning, P. Dong, X. Wang, X. Hu, J. Liu, L. Guo, B. Hu, R. Kwok, and V. C. M. Leung, “Partial computation offloading and adaptive task scheduling for 5G-enabled vehicular networks,” IEEE Transactions on Mobile Computing, p. 1, 2020.
    [13]
    W. Wang, H. Huang, L. Zhang, and C. Su, “Secure and efficient mutual authentication protocol for smart grid under blockchain,” Peer-to-Peer Networking and Applications, 2020.
    [14]
    Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.
    [15]
    A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.
    [16]
    A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols, G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hassabis, “Hybrid computing using a neural network with dynamic external memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016.
    [17]
    C. Farabet, C. Poulet, J. Han, and Y. LeCun, “CNP: an FPGA-based processor for convolutional networks,” in IEEE International Conference on Field Programmable Logic and Applications, pp. 32–37, Prague, Czech Republic, 2019.
    [18]
    N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, R. B. Al Borchers, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a tensor processing unit,” in Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 1–12, Toronto, ON, Canada, 2017.
    [19]
    A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26, 2016.
    [20]
    L. Guo, Z. Ning, W. Hou, B. Hu, and P. Guo, “Quick answer for big data in sharing economy: innovative computer architecture design facilitating optimal service-demand matching,” IEEE Transactions on Automation Science and Engineering, vol. 15, no. 4, pp. 1494–1506, 2018.
    [21]
    P. Guo, W. Hou, L. Guo, Q. Yang, Y. Ge, and H. Liang, “Low insertion loss and non-blocking microring-based optical router for 3d optical network-on-chip,” IEEE Photonics Journal, vol. 10, no. 2, pp. 1–10, 2018.
    [22]
    J. Feldmann, N. Youngblood, C. Wright, H. Bhaskaran, and W. H. P. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature, vol. 569, no. 7755, pp. 208–214, 2019.
    [23]
    P. Guo, W. Hou, L. Guo, W. Sun, C. Liu, H. Bao, L. H. K. Duong, and W. Liu, “Fault-tolerant routing mechanism in 3d optical network-on-chip based on node reuse,” IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 3, pp. 547–564, 2020.
    [24]
    Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nature Photonics, vol. 11, no. 7, pp. 441–446, 2017.
    [25]
    L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Optics Express, vol. 17, no. 17, pp. 15248–15256, 2009.
    [26]
    Z. Ying, C. Feng, Z. Zhao, S. Dhar, H. Dalir, J. Gu, Y. Cheng, R. Soref, D. Z. Pan, and R. T. Chen, “Electronic-photonic arithmetic logic unit for high-speed computing,” Nature Communications, vol. 11, no. 1, article 2154, 2020.
    [27]
    Z. Ying, Z. Wang, Z. Zhao, S. Dhar, D. Z. Pan, R. Soref, and R. T. Chen, “Silicon microdisk-based full adders for optical computing,” Optics Letters, vol. 43, no. 5, pp. 983–986, 2018.
    [28]
    T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Optics Express, vol. 21, no. 10, pp. 11869–11876, 2013.
    [29]
    J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nature Photonics, vol. 4, no. 8, pp. 527–534, 2010.
    [30]
    Y. Urino, Y. Noguchi, M. Noguchi, M. Imai, M. Yamagishi, S. Saitou, N. Hirayama, M. Takahashi, H. Takahashi, E. Saito, M. Okano, T. Shimizu, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, J. Fujikata, D. Shimura, H. Okayama, H. Yaegashi, T. Tsuchizawa, K. Yamada, M. Mori, T. Horikawa, T. Nakamura, and Y. Arakawa, “Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate,” Optics Express, vol. 20, no. 26, pp. B256–B263, 2012.
    [31]
    H. Jia, L. Zhang, J. Ding, L. Zheng, C. Yuan, and L. Yang, “Microring modulator matrix integrated with mode multiplexer and de-multiplexer for on-chip optical interconnect,” Optics Express, vol. 25, no. 1, pp. 422–430, 2017.
    [32]
    Z. Ying, S. Dhar, Z. Zhao, C. Feng, R. Mital, C. J. Chung, D. Z. Pan, R. A. Soref, and R. T. Chen, “Electro-optic ripple-carry adder in integrated silicon photonics for optical computing,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 6, pp. 1–10, 2018.
    [33]
    J. Dong, A. Zheng, D. Gao, S. Liao, L. Lei, D. Huang, and X. Zhang, “High-order photonic differentiator employing on-chip cascaded microring resonators,” Optics Letters, vol. 38, no. 5, pp. 628–630, 2013.
    [34]
    M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nature Communications, vol. 1, no. 1, article 29, 2010.
    [35]
    L. Yang, R. Ji, L. Zhang, J. Ding, and Q. Xu, “On-chip CMOS-compatible optical signal processor,” Optics Express, vol. 20, no. 12, pp. 13560–13565, 2012.
    [36]
    F. Liu, H. Zhang, Y. Chen, Z. Huang, and H. Gu, “WRH-ONoC: a wavelength-reused hierarchical architecture for optical network on chips,” in 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 1912–1920, Kowloon, Hong Kong, April 2015.
    [37]
    P. Guo, W. Hou, L. Guo, Z. Cao, and Z. Ning, “Potential threats and possible countermeasures for photonic network-on-chip,” IEEE Communications Magazine, vol. 58, no. 9, pp. 48–53, 2020.
    [38]
    P. Guo, W. Hou, L. Guo, Z. Ning, M. S. Obaidat, and W. Liu, “WDM-MDM silicon-based optical switching for data center networks,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pp. 1–6, Shanghai, China, May 2019.
    [39]
    W. Liu, W. Liu, Y. Ye, Q. Lou, Y. Xie, and L. Jiang, “Holylight: a nanophotonic accelerator for deep learning in data centers,” in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1483–1488, Florence, Italy, March 2019.
    [40]
    W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Reviews, vol. 6, no. 1, pp. 47–73, 2012.
    [41]
    P. Guo, W. Hou, and L. Guo, “Designs of low insertion loss optical router and reliable routing for 3D optical network-on-chip,” Science China Information Sciences, vol. 59, no. 10, article 102302, 2016.
    [42]
    A. Sampson and M. Buckler, “FODLAM, a first-order deep learning accelerator model,” https://github.com/cucapra/fodlam.
    [44]
    A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Scientific Reports, vol. 7, no. 1, article 7430, 2017.

    Index Terms

    1. An Energy-Efficient Silicon Photonic-Assisted Deep Learning Accelerator for Big Data
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Wireless Communications & Mobile Computing
        Wireless Communications & Mobile Computing  Volume 2020, Issue
        2020
        4630 pages
        This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

        Publisher

        John Wiley and Sons Ltd.

        United Kingdom

        Publication History

        Published: 01 January 2020

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 12 Aug 2024

        Other Metrics

        Citations

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media