Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Implicit learning in 3D object recognition: the importance of temporal context

Published: 01 February 1999 Publication History

Abstract

No abstract available.

References

[1]
Becker, S. (1993). Learning to categorize objects using temporal coherence. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing systems, 5 (pp. 361-368). San Mateo, CA: Morgan Kaufmann.
[2]
Becker, S. (1997). Learning temporally persistent hierarchical representations. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9 (pp. 824-830). Cambridge, MA: MIT Press.
[3]
Becker, S., & Hinton, G. E. (1992). A self-organizing neural network that discovers surfaces in random-dot stereograms. Nature, 355, 161-163.
[4]
Bridle, J. S. (1990). Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. In D. S. Touretzky (Ed.), Neural information processing systems, 2 (pp. 111-217). San Mateo, CA: Morgan Kaufmann.
[5]
Bruce, V. (1997). Human face perception and identification. In NATO ASI on Face Recognition.
[6]
Bruce, V., & Valentine, T. (1998). When a nod's as good as a wink: The role of dynamic information in facial recognition. In M. Gruneberg, P. E. Morris, & R. N. Sykes (Eds.), Practical aspects of memory: Current research and issues (Vol. 1, pp. 169-174). New York: Wiley.
[7]
Cacciatore, T. W., & Nowlan, S. J. (1994). Mixtures of controllers for jump linear and nonlinear plants. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems, 6 (pp. 719-726). San Mateo, CA: Morgan Kaufmann.
[8]
Calvin, W. H. (1995). Cortical columns, modules, and Hebbian cell assemblies. In M. Arbib (Ed.), The handbook of brain theory and neural networks. Cambridge, MA: MIT Press.
[9]
Christie, F., & Bruce, V. (1998). The role of dynamic information in the recognition of unfamiliar faces. Memory and Cognition, 26, 780-790.
[10]
Cudeiro, J., & Sillito, A. M. (1996). Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus. Journal of Physiology, 490, 481-492.
[11]
Dayan, P., Hinton, G. E., Neal, R., & Zemel, R. S. (1995). The Helmholtz machine. Neural Computation, 7, 1022-1037.
[12]
De Angelis, G. C., Ohzawa, I., & Freeman, R. D. (1995). Receptive-field dynamics in the central visual pathways. Trends in Neurosciences, 18, 451-458.
[13]
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Proceedings of the Royal Statistical Society, B-39, 1-38.
[14]
Desimone, R., Albright, T. D., Gross, G., & Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience, 4(8), 2051-2062.
[15]
Dong, D. W., & Atick, J. J. (1995). Temporal decorrelation: A theory of lagged and nonlagged responses in the lateral geniculate nucleus. Network: Computation in Neural Systems, 6, 159-178.
[16]
Douglas, R., & Martin, K. (1990). Neocortex. In G. M. Shepherd (Ed.), The synaptic organization of the brain (pp. 389-438). New York: Oxford University Press.
[17]
Edelman, S., & Weinshall, D. (1991). A self-organized multiple-view representation of 3D objects. Biological Cybernetics, 64(3), 209-219.
[18]
Födliák, P. (1991). Learning invariance from transformation sequences. Neural Computation, 3(2), 194-200.
[19]
Gilbert, C. D., Das, A., Ito, M., Kapadia, M., & Westheimer, G. (1996). Spatial integration and cortical dynamics. Proceedings of the National Academy of Sciences, 93, 615-622.
[20]
Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1971). Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Physiology, 35, 96-111.
[21]
Hess, D. J., Foss, D. J., & Carroll, P. (1995). Effects of global and local context on lexical processing during language comprehension. Journal of Experimental Psychology: General, 124(1), 62-82.
[22]
Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length, and Helmholtz free energy. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems, 6 (pp. 3-10). San Mateo, CA: Morgan Kaufmann.
[23]
Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of local experts. Neural Computation, 3(1), 79-87.
[24]
Kay, J., & Phillips, W. A. (1997). Activation functions, computational goals, and learning rules for local processors with contextual guidance. Neural Computation, 9(4), 895-910.
[25]
Levitt, J. B., Kiper, D. C., & Movshon, J. A. (1994). Receptive fields and functional architecture of macaque V2. Journal of Neurophysiology, 71(6), 2517-2541.
[26]
Linsker, R. (1988, March). Self-organization in a perceptual network. IEEE Computer, 21, 105-117.
[27]
MacDonald, J., & McGurk, H. (1978). Visual influences on speech perception processes. Perception and Psychophysics, 24(3), 253-257.
[28]
McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419-457.
[29]
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception, part I: An account of basic findings. Psychological Review, 88, 375-407.
[30]
McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264, 746-748.
[31]
Mel, B. W. (1994). Information processing in dendritic trees. Neural Computation, 6(6), 1031-1085.
[32]
Miyashita, Y. (1988). Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature, 335, 817-820.
[33]
Mundel, T., Dimitrov, A., & Cowan, J. D. (1997). Visual cortex circuitry and orientation tuning. In M. Mozer, J. Jordan, & T. Petsche, (Eds.), Advances in neural information processing systems, 9. Cambridge, MA: MIT Press.
[34]
Neely, J. (1991). Semantic priming effects in visual word recognition: A selective review of current findings and theories. In D. Besner & G. W. Humphreys (Eds.), Basic processes in reading: Visual word recognition (pp. 264-336). Hillsdale, NJ: Erlbaum.
[35]
Nowlan, S. J. (1990). Maximum likelihood competitive learning. In D. S. Touretzky (Ed.), Neural information processing systems, 2 (pp. 574-582). San Mateo, CA: Morgan Kaufmann.
[36]
Nowlan, S. J., & Sejnowski, T. J. (1993). Filter selection model for generating visual motion signals. In S. Hanson, J. D. Cowan, & L. Giles (Eds.), Advances in neural information processing systems, 5 (pp. 369-376). San Mateo, CA: Morgan Kaufmann.
[37]
Oram, M., & Perrett, D. (1994). Modeling visual recognition from neurobiological constraints. Neural Networks, 7(6/7), 945-972.
[38]
O'Reilly, R. C., & Johnson, M. H. (1994). Objection recognition and sensitive periods: A computational analysis of visual imprinting. Neural Computation, 6(3), 357-389.
[39]
Perrett, D. I., Hietanen, J. K., Oram, M. W., & Benson, P. J. (1992). Organization and functions of cells responsive to faces in the temporal cortex. Philosophical Transactions of the Royal Society of London, B, 335, 23-30.
[40]
Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal cortex. Experimental Brain Research, 47, 329-342.
[41]
Phillips, W. A., Kay, J., & Smyth, D. (1995). The discovery of structure by multistream networks of local processors with contextual guidance. Network, 6, 225-246.
[42]
Pouget, A., & Sejnowski, T. J. (1997). Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience, 9(2), 222-237.
[43]
Rao, R. P. N., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Computation, 9(4), 721-764.
[44]
Ringach, D. L., Hawken, M. J., & Shapley, R. (1997). Dynamics of orientation tuning in macaque primary visual cortex. Nature, 387, 281-284.
[45]
Saul, L. K., & Jordan, M. I. (1996). Exploiting tractable substructures in intractable networks. In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 486-492). Cambridge, MA: MIT Press.
[46]
Seergobin, K. (1996). Unsupervised learning: The impact of temporal and spatial coherence on the formation of visual representations. Unpublished master's thesis, McMaster University.
[47]
Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. (1995). Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496.
[48]
Stewart Bartlett, M., & Sejnowski, T. J. (1997). Viewpoint invariant face recognition using independent component analysis and attractor networks. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Neural information processing systems, 9 (pp. 817-823). Cambridge, MA: MIT Press.
[49]
Stewart Bartlett, M., & Sejnowski, T. J. (1998). Learning viewpoint invariant face representations from visual experience in an attractor network. Network, 9, 399-417.
[50]
Stone, J. (1996). Learning perceptually salient visual parameters using spatiotemporal smoothness constraints. Neural Computation, 8, 1463-1492.
[51]
Tanaka, K., Fujita, I., Kobatake, E., Cheng, K., & Ito, M. (1993). Serial processing of visual object-features in the posterior and anterior parts of the inferotemporal cortex. In T. Ono, L. R. Squire, M. E. Raichle, D. I. Perrett, & M. Fukuda (Eds.), Brain mechanisms of perception and memory, from neuron to behavior (pp. 34-46). New York: Oxford University Press.
[52]
Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 66(1), 170-189.
[53]
Wallis, G., & Rolls, E. T. (1997). Invariant face and object recognition in the visual system. Progress in Neurobiology, 51(2), 167-194.
[54]
Weinshall, D., Edelman, S., & Bülthoff, H. H. (1990). A self-organizing multiple-view representation of 3D objects. In D. S. Touretzky (Ed.), Advances in neural information processing systems, 2 (pp. 274-282). San Mateo, CA: Morgan Kaufmann.
[55]
Yamane, S., Kaji, S., & Kawano, K. (1988). What facial features activate face neurons in inferotemporal cortex of the monkey. Experimental Brain Research, 73, 209-214.

Cited By

View all
  • (2021)Towards a self-sufficient face verification systemExpert Systems with Applications: An International Journal10.1016/j.eswa.2021.114734174:COnline publication date: 15-Jul-2021
  • (2019)Incremental Learning Techniques Within a Self-updating Approach for Face Verification in Video-SurveillancePattern Recognition and Image Analysis10.1007/978-3-030-31321-0_3(25-37)Online publication date: 1-Jul-2019
  • (2011)Invariant object recognition and pose estimation with slow feature analysisNeural Computation10.5555/2696389.269639323:9(2289-2323)Online publication date: 1-Sep-2011
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Neural Computation
Neural Computation  Volume 11, Issue 2
Feb. 15, 1999
255 pages
ISSN:0899-7667
Issue’s Table of Contents

Publisher

MIT Press

Cambridge, MA, United States

Publication History

Published: 01 February 1999

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Towards a self-sufficient face verification systemExpert Systems with Applications: An International Journal10.1016/j.eswa.2021.114734174:COnline publication date: 15-Jul-2021
  • (2019)Incremental Learning Techniques Within a Self-updating Approach for Face Verification in Video-SurveillancePattern Recognition and Image Analysis10.1007/978-3-030-31321-0_3(25-37)Online publication date: 1-Jul-2019
  • (2011)Invariant object recognition and pose estimation with slow feature analysisNeural Computation10.5555/2696389.269639323:9(2289-2323)Online publication date: 1-Sep-2011
  • (2010)Modeling and analysis of dynamic behaviors of web image collectionsProceedings of the 11th European conference on Computer vision: Part V10.5555/1888150.1888158(85-98)Online publication date: 5-Sep-2010
  • (2009)Deep learning from temporal coherence in videoProceedings of the 26th Annual International Conference on Machine Learning10.1145/1553374.1553469(737-744)Online publication date: 14-Jun-2009
  • (2009)Steps to a Cyber-Physical Model of Networked Embodied Anticipatory BehaviorAnticipatory Behavior in Adaptive Learning Systems10.1007/978-3-642-02565-5_5(77-94)Online publication date: 18-Jun-2009
  • (2006)Soft Mixer Assignment in a Hierarchical Generative Model of Natural Scene StatisticsNeural Computation10.1162/neco.2006.18.11.268018:11(2680-2718)Online publication date: 1-Nov-2006
  • (2005)Learning Viewpoint Invariant Perceptual Representations from Cluttered ImagesIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2005.10527:5(753-761)Online publication date: 1-May-2005
  • (2004)A temporal stability approach to position and attention-shift-invariant recognitionNeural Computation10.1162/089976604194190716:11(2293-2321)Online publication date: 1-Nov-2004
  • (2004)SINBAD automation of scientific discoveryNatural Computing: an international journal10.1023/B:NACO.0000027756.50327.263:2(207-233)Online publication date: 13-May-2004
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media