Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Brain-Based Devices for the Study of Nervous Systems and the Development of Intelligent Machines

Published: 01 January 2005 Publication History

Abstract

The simultaneous study of brain function at all levels of organization is difficult to undertake with current experimental tools. Present day electrophysiology only allows the recording of at most hundreds of neurons while an animal is performing a behavioral task. Because of this limitation and the sheer complexity of the nervous system, computational modeling has become essential in developing theories of brain function. Accordingly, our group has constructed a series of brain-based devices (BBDs), that is, physical devices with simulated nervous systems that guide behavior, to serve as a heuristic for testing theories of brain function. Unlike animal models, BBDs permit analysis of activity at all levels of the nervous system as the device behaves in its environment. Although the principal focus of developing BBDs has been to test theories of brain function, this type of modeling may also provide a basis for robotic design and practical applications.

References

[1]
1. Almassy, N., Edelman, G. M., & Sporns, O. (1998). Behavioral constraints in the development of neuronal properties: A cortical model embedded in a real-world device. Cerebral Cortex, 8, 346-361.
[2]
2. Arkin, R. C. (1993). Modeling neural function at the schema level: Implications and results for robotic control In T. McKenna (Ed.), Biological neural networks in invertebrate neuroethology and robotics (pp. 383-409). Boston: Academic Press.
[3]
3. Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Science, 4, 91-99.
[4]
4. Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2, 14-23.
[5]
5. Chapman, B., & Stryker, M. P. (1992). Origin of orientation tuning in the visual cortex. Current Opinion in Neurobiology, 2, 498-501.
[6]
6. Chiel, H. J., & Beer, R. D. (1997). The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neuroscience, 20, 553-557.
[7]
7. Clark, A. (1997). Being there. Putting brain, body, and world together again. Cambridge, MA: MIT Press.
[8]
8. Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 1102-1105.
[9]
9. Driver, J., & Mattingley, J. B. (1998). Parietal neglect and visual awareness. Nature Neuroscience, 1, 17-22.
[10]
10. Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. New York: Basic Books.
[11]
11. Edelman, G. M. (1993). Neural Darwinism: Selection and reentrant signaling in higher brain function. Neuron, 10, 115-125.
[12]
12. Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the USA, 98, 13763-13768.
[13]
13. Edelman, G. M., Reeke, G. N., Gall, W. E., Tononi, G., Williams, D., & Sporns, O. (1992). Synthetic neural modeling applied to a real-world artifact. Proceedings of the National Academy of the Sciences of USA, 89, 7267-7271.
[14]
14. Floreano, D., & Mondala, F. (1998). Evolutionary neurocontrollers for autonomous mobile robots. Neural Networks, 11, 1461-1478.
[15]
15. Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233, 1416-1419.
[16]
16. Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts in attention. Vision Research, 40(10-12), 1489-1506.
[17]
17. Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transaction on Pattern Analysis and Machine Intellegence, 20, 1254-1259.
[18]
18. Kobatake, E., Wang, G., & Tanaka, K. (1998). Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. Journal of Neurophysiology, 80, 324-330.
[19]
19. Krichmar, J. L., & Edelman, G. M. (2002). Machine psychology: Autonomous behavior, perceptual categorization and conditioning in a brain-based device. Cerebral Cortex, 12, 818-830.
[20]
20. Krichmar, J. L., & Snook, J. A. (2002). A neural approach to adaptive behavior and multi-sensor action selection in a mobile device. In IEEE Conference on Robotics and Automation (pp. 3864-3869).
[21]
21. Krichmar, J. L., Snook, J. A., Edelman, G. M., & Sporns, O. (2000). Experience-dependent perceptual categorization in a behaving real-world device. In J.-A. Meyer, A. Berthoz, D. Floreano, H. Roitblat, and S. W. Wilson (Eds.), Animals to Animats 6: Proceedings of the Sixth International Conference on the Simulation of Adaptive Behavior (pp. 41-50). Cambridge, MA: MIT Press.
[22]
22. McKinstry, J. L., Seth, A. K., Edelman, G. M., & Krichmar, J. L. (2002). Synchronous activity binds visual stimulus properties viewed by a brain-based device. Society for Neuroscience Abstracts, 558, 12.
[23]
23. Mishkin, M., Vargha-Khadem, F., & Gadian, D. G. (1998). Amnesia and the organization of the hippocampal system. Hippocampus, 8, 212-216.
[24]
24. Moravec, H. P. (1983). The Stanford cart and the CMU rover. Proceedings of the IEEE, 71, 872-884.
[25]
25. Nilsson, N. (1984). Shakey the robot. Menlo Park, CA: SRI International.
[26]
26. Nolfi, S., & Florcano, D. (2000). Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. Cambridge, MA: MIT Press.
[27]
27. Olshausen, B. A., Anderson, C. H., & Van Essen, D. C. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. Journal of Neuroscience, 13, 4700-4719.
[28]
28. Pfeifer, R., & Schier, C. (1997). Sensory-motor coordination: The metaphor and beyond. Robotics and Autonomous Systems, 20, 157-178.
[29]
29. Reeke, G. N., & Edelman, G. M. (1988). Real brains and artificial intelligence. Daedalus: Proceedings of the American Academy of Arts and Sciences, 117, 143-173.
[30]
30. Reeke, G. N., Sporns, O., & Edelman, G. M. (1990). Synthetic neural modeling: The "Darwin" series of recognition automata. Proceedings of the IEEE, 78, 1498-1530.
[31]
31. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593-1599.
[32]
32. Scoville, W. B., & Milner, B. (2000). Loss of recent memory after bilateral hippocampal lesions. Journal of Neuropsychiatry and Clinical Neuroscience, 12, 103-113.
[33]
33. Seth, A. K., McKinstry, J. L., Edelman, G. M., & Krichmar, J. L. (2004). Visual binding through reentrant connectivity and dynamic synchronization in a brain-based device. Cerebral Cortex, 14, 1185-1199.
[34]
34. Slocum, A. C., Downey, D. C., & Beer, R. D. (2000). Further experiments in the evolution of minimally cognitive behavior: From perceiving affordances to selective attention. In S. W. Wilson (Ed.), From Animals to Animats 6: Sixth International Conference on Simulation of Adaptive Behavior (pp. 430-439). Cambridge, MA: MIT Press.
[35]
35. Sporns, O., Almassy, N., & Edelman, G. M. (2000). Plasticity in value systems and its role in adaptive behavior. Adaptive Behavior, 8, 129-148.
[36]
36. Sur, M. (1988). Visual projections induced into auditory thalamus and cortex: Implications for thalamic and cortical information processing. Progress in Brain Research, 75, 129-136.
[37]
37. Thelen, E., Schoner, G., Scheier, C., & Smith, L. B. (2001). The dynamics of embodiment: A field theory of infant perseverative reaching. Behavioral Brain Sciences, 24, 1-34; discussion, 34-86.
[38]
38. Tononi, G., Sporns, O., & Edelman, G. M. (1992). Reentry and the problem of integrating multiple cortical areas: Simulation of dynamic integration in the visual system. Cerebral Cortex, 2, 310-335.
[39]
39. Tononi, G., Sporns, O., & Edelman, G. M. (1999). Measures of degeneracy and redundancy in biological networks. Proceedings of the National Academy of Sciences of the USA, 96, 3257-3262.
[40]
40. Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science, 261, 1055-1058.

Cited By

View all
  • (2018)40 years of cognitive architectures: core cognitive abilities and practical applicationsArtificial Intelligence Review10.1007/s10462-018-9646-y53:1(17-94)Online publication date: 28-Jul-2018
  • (2013)Reinforcement learning of two-joint virtual arm reaching in a computer model of sensorimotor cortexNeural Computation10.1162/NECO_a_0052125:12(3263-3293)Online publication date: 1-Dec-2013
  • (2011)Neuromorphic modeling abstractions and simulation of large-scale cortical networksProceedings of the International Conference on Computer-Aided Design10.5555/2132325.2132411(334-338)Online publication date: 7-Nov-2011
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Artificial Life
Artificial Life  Volume 11, Issue 1-2
January 2005
239 pages
ISSN:1064-5462
EISSN:1530-9185
Issue’s Table of Contents

Publisher

MIT Press

Cambridge, MA, United States

Publication History

Published: 01 January 2005

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2018)40 years of cognitive architectures: core cognitive abilities and practical applicationsArtificial Intelligence Review10.1007/s10462-018-9646-y53:1(17-94)Online publication date: 28-Jul-2018
  • (2013)Reinforcement learning of two-joint virtual arm reaching in a computer model of sensorimotor cortexNeural Computation10.1162/NECO_a_0052125:12(3263-3293)Online publication date: 1-Dec-2013
  • (2011)Neuromorphic modeling abstractions and simulation of large-scale cortical networksProceedings of the International Conference on Computer-Aided Design10.5555/2132325.2132411(334-338)Online publication date: 7-Nov-2011
  • (2010)Importing the computational neuroscience toolbox into neuro-evolution-application to basal gangliaProceedings of the 12th annual conference on Genetic and evolutionary computation10.1145/1830483.1830592(587-594)Online publication date: 7-Jul-2010
  • (2009)Prerequesites for symbiotic brain-machine interfacesProceedings of the 2009 IEEE international conference on Systems, Man and Cybernetics10.5555/1732323.1732620(1736-1741)Online publication date: 11-Oct-2009
  • (2009)Creating Brain-Like IntelligenceCreating Brain-Like Intelligence10.1007/978-3-642-00616-6_1(1-14)Online publication date: 13-Mar-2009
  • (2008)Cultivated microorganisms control a real robotProceedings of the 15th international conference on Advances in neuro-information processing - Volume Part I10.5555/1813488.1813633(1087-1094)Online publication date: 25-Nov-2008
  • (2008)Hybrid design principles and time constants in the construction of brain-based roboticsProceedings of the 15th international conference on Advances in neuro-information processing - Volume Part I10.5555/1813488.1813504(119-126)Online publication date: 25-Nov-2008
  • (2008)2008 Special IssueNeural Networks10.1016/j.neunet.2008.01.00421:4(553-561)Online publication date: 1-May-2008
  • (2007)The iCub cognitive humanoid robot50 years of artificial intelligence10.5555/1806115.1806154(358-369)Online publication date: 1-Jan-2007
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media