Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article
Free access

SVMTorch: support vector machines for large-scale regression problems

Published: 01 September 2001 Publication History

Abstract

Support Vector Machines (SVMs) for regression problems are trained by solving a quadratic optimization problem which needs on the order of l square memory and time resources to solve, where l is the number of training examples. In this paper, we propose a decomposition algorithm, SVMTorch (available at <a target=_new href=http://www.idiap.ch/learning/SVMTorch.html>http://www.idiap.ch/learning/SVMTorch.html</a>), which is similar to SVM-Light proposed by Joachims (1999) for classification problems, but adapted to regression problems. With this algorithm, one can now efficiently solve large-scale regression problems (more than 20000 examples). Comparisons with Nodelib, another publicly available SVM algorithm for large-scale regression problems from Flake and Lawrence (2000) yielded significant time improvements. Finally, based on a recent paper from Lin (2000), we show that a convergence proof exists for our algorithm.

References

[1]
Collobert, R., &amp; Bengio, S. (2000). On the Convergence of SVMTorch, an Algorithm for Large-Scale Regression Problems (IDIAP-RR No. 24). IDIAP. (Available at ftp://www.idiap.ch/pub/reports/2000/rr00-24.ps.gz)
[2]
Drucker, H., Burges, C., Kaufman, L., Smola, A., &amp; Vapnik, V. (1997). Support vector regression machines. In M. Mozer, M. Jordan, &amp; T. Petsche (Eds.), Advances in Neural Information Processing Systems 9 (pp. 155-161). The MIT Press.
[3]
Flake, G., &amp; Lawrence, S. (2000). Efficient SVM regression training with SMO. (Submitted to Machine Learning. Available at http://external.nj.nec.com/homepages/flake/smorch.ps)
[4]
Fletcher, R. (1987). Practical Methods of Optimization. Chichester: John Wiley and Sons.
[5]
Joachims, T. (1999). Making large-scale support vector machine learning practical. In B. Schölkopf, C. Burges, &amp; A. Smola (Eds.), Advances in Kernel Methods. The MIT Press.
[6]
Keerthi, S. S., &amp; Gilbert, E. G. (2000). Convergence of a Generalized SMO Algorithm for SVM Classifier Design (Tech. Rep. No. CD-00-01). Control Division, Dept. of Mechanical and Production Engineering, National University of Singapore. (Available at http://guppy.mpe.nus.edu.sg/~mpessk/svm/conv_ml.ps.gz)
[7]
Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., &amp; Murthy, K. R. K. (1999). Improvements to Platt's SMO Algorithm for SVM Classifier Design (Tech. Rep. No. CD-99-14). Control Division, Dept. of Mechanical and Production Engineering, National University of Singapore. (To appear in Neural Computation. Available at http://guppy.mpe.nus.edu.sg/~mpessk/smo_mod.ps.gz)
[8]
Laskov, P. (2000). An improved decomposition algorithm for regression support vector machines. In S. Solla, T. Leen, &amp; K.-R. Müller (Eds.), Advances in Neural Information Processing Systems 12. The MIT Press.
[9]
Lin, C. (2000). On the Convergence of the Decomposition Method for Support Vector Machines (Tech. Rep.). National Taiwan University. (Available at http://www.csie.ntu.edu.tw/~cjlin/papers/conv.ps.gz)
[10]
Müller, K.-R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., &amp; Vapnik, V. (1997). Predicting time series with support vector machines. In W. Gerstner, A. Germond, M. Hasler, &amp; J.-D. Nicoud (Eds.), Artificial Neural Networks - ICANN'97 (pp. 999- 1004). Springer.
[11]
Osuna, E., Freund, R., &amp; Girosi, F. (1997). An improved training algorithm for support vector machines. In J. Principe, L. Giles, N. Morgan, &amp; E. Wilson (Eds.), Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Workshop (pp. 276-285). New York: IEEE Press.
[12]
Platt, J. C. (1999). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, &amp; A. Smola (Eds.), Advances in Kernel Methods. The MIT Press.
[13]
Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., &amp; Murthy, K. R. K. (2000). Improvements to the SMO algorithm for SVM regression. IEEE Transaction on Neural Networks, 11 (5), 1188-1183.
[14]
Smola, A., &amp; Schölkopf, B. (1998). A Tutorial on Support Vector Regression (Tech. Rep. No. NeuroCOLT NC-TR-98-030). Royal Holloway College, University of London, UK.
[15]
Vapnik, V. (1995). The Nature of Statistical Learning Theory (second ed.). Springer.

Cited By

View all
  • (2022)FPGA acceleration analysis of LibSVM predictors based on high-level synthesisThe Journal of Supercomputing10.1007/s11227-022-04406-678:12(14137-14163)Online publication date: 1-Aug-2022
  • (2022)Groundwater level prediction using machine learning algorithms in a drought-prone areaNeural Computing and Applications10.1007/s00521-022-07009-734:13(10751-10773)Online publication date: 1-Jul-2022
  • (2021)The state of the art of deep learning models in medical science and their challengesMultimedia Systems10.1007/s00530-020-00694-127:4(599-613)Online publication date: 1-Aug-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image The Journal of Machine Learning Research
The Journal of Machine Learning Research  Volume 1, Issue
9/1/2001
348 pages
ISSN:1532-4435
EISSN:1533-7928
Issue’s Table of Contents

Publisher

JMLR.org

Publication History

Published: 01 September 2001
Published in JMLR Volume 1

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)63
  • Downloads (Last 6 weeks)17
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)FPGA acceleration analysis of LibSVM predictors based on high-level synthesisThe Journal of Supercomputing10.1007/s11227-022-04406-678:12(14137-14163)Online publication date: 1-Aug-2022
  • (2022)Groundwater level prediction using machine learning algorithms in a drought-prone areaNeural Computing and Applications10.1007/s00521-022-07009-734:13(10751-10773)Online publication date: 1-Jul-2022
  • (2021)The state of the art of deep learning models in medical science and their challengesMultimedia Systems10.1007/s00530-020-00694-127:4(599-613)Online publication date: 1-Aug-2021
  • (2019)General correlation coefficient based agglomerative clusteringCluster Computing10.1007/s10586-018-2863-y22:2(553-583)Online publication date: 1-Jun-2019
  • (2019)An improved regularization based Lagrangian asymmetric ν-twin support vector regression using pinball loss functionApplied Intelligence10.1007/s10489-019-01465-w49:10(3606-3627)Online publication date: 1-Oct-2019
  • (2019)An optimized SVM-k-NN currency exchange forecasting model for Indian currency marketNeural Computing and Applications10.1007/s00521-017-3248-531:7(2995-3021)Online publication date: 1-Jul-2019
  • (2018)FPGA Fastfood - A High Speed Systolic Implementation of a Large Scale Online Kernel MethodProceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays10.1145/3174243.3174271(279-284)Online publication date: 15-Feb-2018
  • (2018)Systematic Review of Clustering High-Dimensional and Large DatasetsACM Transactions on Knowledge Discovery from Data10.1145/313208812:2(1-68)Online publication date: 23-Jan-2018
  • (2018)Performance Analysis for SVM Combining with Metric LearningNeural Processing Letters10.1007/s11063-017-9771-748:3(1373-1394)Online publication date: 1-Dec-2018
  • (2018)An Incremental Dual nu-Support Vector Regression AlgorithmAdvances in Knowledge Discovery and Data Mining10.1007/978-3-319-93037-4_41(522-533)Online publication date: 3-Jun-2018
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media