Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article
Free access

Inducing grammars from sparse data sets: a survey of algorithms and results

Published: 01 December 2003 Publication History

Abstract

This paper provides a comprehensive survey of the field of grammar induction applied to randomly generated languages using sparse example sets.

References

[1]
A. W. Beirmann and F. E. Perry. Speeding up the synthesis of programs from traces. IEEE Transactions On Computers, C(24): 122-136, 1975.
[2]
Y. Bengio and P. Frasconi. An input output HMM architecture. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing Systems, volume 7, pages 427-434. The MIT Press, 1995. URL citeseer.nj.nec.com/bengio95input.html.
[3]
O. Cicchello. A new limited search approach of learning Abbadingo-style finite state automata. PhD thesis, University of Guelph, 2002.
[4]
O. Cicchello and S. C. Kremer. Beyond EDSM. In ICGI, pages 37-48, 2002a.
[5]
O. Cicchello and S. C. Kremer. Constrained search for Abbadingo-style problems, 2002b. Under Review.
[6]
F. Coste and J. Nicolas. Regular inference as a graph coloring problem. In Workshop on Grammatical Inference, Automata Induction, and Language Acquisition (ICML '97), Nashville, TN, 1997. URL citeseer.nj.nec.com/coste97regular.html.
[7]
P. Dupont. Regular grammatical inference from positive and negative samples by genetic search: the GIG method. In ICGI, pages 236-245, 1994. URL citeseer.nj.nec.com/dupont94regular.html.
[8]
M. L. Forcada and R. C. Carrasco. Learning the initial state of a Second-Order Recurrent Neural Network during regular-language inference. Neural Computation, 7(5):923-930, September 1995. URL citeseer.nj.nec.com/forcada94learning.html.
[9]
Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R. Shapire, and L. Sellie. Efficient learning of typical finite automata from random walks. In Proceedings of the Twenty-fifth Annual Symposium on Theory of Computing, pages 315-324, 1993.
[10]
C. L. Giles, D. Chen, C. B. Miller, H. H. Chen, G. Z. Sun, and Y. C. Lee. Second-order recurrent neural networks for grammatical inference. In IEEE INNS International Joint Conference on Neural Networks, volume II, pages 273-281, 1991.
[11]
E. M. Gold. Language identification in the limit. Information and Control, 10:447-474, 1967.
[12]
E. M. Gold. Complexity of automaton identification from given data. Information and Control, 37: 302-320, 1978.
[13]
M. A. Harrison. Introduction to formal language theory, Addison-Wesley, Reading, Mass., 1978.
[14]
J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata. Addison-Wesley, Reading, Mass., 1969.
[15]
H. Juillé and J. B. Pollack. A sampling-based heuristic for tree search applied to grammar induction. In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), Madison, Wisconsin, USA, 26-30 1998a. AAAI Press Books. URL citeseer.nj.nec.com/juille98samplingbased.html.
[16]
H. Juillé and J. B. Pollack. A stochastic search approach to grammar induction. In ICGI, pages 126-137, 1998b. URL citeseer.nj.nec.com/juille98stochastic.html.
[17]
K. J. Lang. Random DFA's can be approximately learned from sparse uniform examples. In Proceedings of the Fifth ACM Workshop on Computational Learning Theory, pages 45-52, New York, N.Y., 1992. ACM. URL citeseer.nj.nec.com/lang92random.html.
[18]
K. J. Lang. Evidence-driven state merging with search, 1998. URL citeseer.nj.nec.com/lang98evidence.html. K.J. Lang, (1998) Evidence-Driven State Merging with Search, NECI Technical Report TR98-139.
[19]
K. J. Lang. Faster algorithms for finding minimal consistent DFAs, 1999. URL citeseer.nj.nec.com/353128.html. NEC Tech. Report.
[20]
K. J. Lang and B. A. Pearlmutter. Abbadingo one: Dfa learning competition, 1997. URL http://abbadingo.cs.unm.edu/.
[21]
K. J. Lang, B. A. Pearlmutter, and F. Coste. Gowachin, 1998a. URL http://www.irisa.fr/Gowachin/.
[22]
K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the abbadingo one DFA learning competition and a new evidence-driven state merging algorithm. vLecture Notes in Computer Science, 1433: 1-12, 1998b. URL citeseer.nj.nec.com/article/lang98results.html.
[23]
S. Luke, S. Hamahashi, and H. Kitano. Genetic programming. In Proceedings of the 1999 Genetic and Evolutionary Computation Conference (GECC099). Morgan Kaufmann, 1999.
[24]
A. L. Oliveira and S. Edwards. Limits of exact algorithms for inference of minimum size finite state machines. In Algorithmic Learning Theory, 7th International Workshop, ALT '96, Sydney, Australia, October 1996, Proceedings, volume 1160, pages 59-66. Springer, 1996. URL citeseer.nj.nec.com/63994.html.
[25]
A. L. Oliveira and J. P. Marques Silva. Efficient search techniques for the inference of minimum size finite automata. In String Processing and Information Retrieval, pages 81-89, 1998. URL citeseer.nj.nec.com/oliveira97efficient.html.
[26]
J. M. Pena and A. L. Oliveira. A new algorithm for the reduction of incompletely specified finite state machines. In ICCAD, pages 482-489, 1998. URL citeseer.nj.nee.com/pena98new.html.
[27]
L. Pitt. Inductive Inference, DFAs, and Computational Complexity. 1304 W. Springfield Avenue, Urbana, IL 61801, July 1989. Supported in part by NSF grant IRI-88-09570, and by the Deparment of Computer Science, University of Illinois at Urbana-Champaign.
[28]
J. B. Pollack. The induction of dynamical recognizers. Machine Learning, 7:227-252, 1991. URL citeseer.nj.nee.com/pollack91induction.html.
[29]
S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, 1996.
[30]
M. Tomita. Learning Of Construction Of Finite Automata From Examples Using Hill-Climbing. Pittsburgh, Pennsylvania 15213, May 1982. Sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81-K-1539.
[31]
B. A. Trakhtenbrot and Y. M. Barzdin. Finite Automata Behavior and Synthesis. North-Holland Publishing Company, Amsterdam, 1973.

Cited By

View all
  • (2022)Dynamic Specification Mining Based on TransformerTheoretical Aspects of Software Engineering10.1007/978-3-031-10363-6_16(220-237)Online publication date: 8-Jul-2022
  • (2021)Emergent communication of generalizationsProceedings of the 35th International Conference on Neural Information Processing Systems10.5555/3540261.3541638(17994-18007)Online publication date: 6-Dec-2021
  • (2016)Regex-based entity extraction with active learning and genetic programmingACM SIGAPP Applied Computing Review10.1145/2993231.299323216:2(7-15)Online publication date: 29-Aug-2016
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image The Journal of Machine Learning Research
The Journal of Machine Learning Research  Volume 4, Issue
12/1/2003
1486 pages
ISSN:1532-4435
EISSN:1533-7928
Issue’s Table of Contents

Publisher

JMLR.org

Publication History

Published: 01 December 2003
Published in JMLR Volume 4

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)59
  • Downloads (Last 6 weeks)7
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Dynamic Specification Mining Based on TransformerTheoretical Aspects of Software Engineering10.1007/978-3-031-10363-6_16(220-237)Online publication date: 8-Jul-2022
  • (2021)Emergent communication of generalizationsProceedings of the 35th International Conference on Neural Information Processing Systems10.5555/3540261.3541638(17994-18007)Online publication date: 6-Dec-2021
  • (2016)Regex-based entity extraction with active learning and genetic programmingACM SIGAPP Applied Computing Review10.1145/2993231.299323216:2(7-15)Online publication date: 29-Aug-2016
  • (2016)Active learning approaches for learning regular expressions with genetic programmingProceedings of the 31st Annual ACM Symposium on Applied Computing10.1145/2851613.2851668(97-102)Online publication date: 4-Apr-2016
  • (2016)Inference of Regular Expressions for Text Extraction from ExamplesIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2016.251558728:5(1217-1230)Online publication date: 1-May-2016
  • (2015)Evolutionary Learning of Syntax Patterns for Genic Interaction ExtractionProceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation10.1145/2739480.2754706(1183-1190)Online publication date: 11-Jul-2015
  • (2014)Playing regex golf with genetic programmingProceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation10.1145/2576768.2598333(1063-1070)Online publication date: 12-Jul-2014
  • (2014)A survey of grammatical inference in software engineeringScience of Computer Programming10.1016/j.scico.2014.05.00896:P4(444-459)Online publication date: 15-Dec-2014
  • (2011)Learning web application firewall - benefits and caveatsProceedings of the IFIP WG 8.4/8.9 international cross domain conference on Availability, reliability and security for business, enterprise and health information systems10.5555/2033973.2033999(295-308)Online publication date: 22-Aug-2011
  • (2010)SSGL: a semi-supervised grammar learnerInternational Journal of Computer Applications in Technology10.1504/IJCAT.2010.03452638:4(259-263)Online publication date: 1-Aug-2010
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media