Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Multiplicative Updates for Nonnegative Quadratic Programming

Published: 01 August 2007 Publication History

Abstract

Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.

References

[1]
Allen, J. B., & Berkley, D. A. (1979). Image method for efficiently simulating small-room acoustics. Journal of the Acoustical Society of America, 65, 943-950.
[2]
Bauer, E., Koller, D., & Singer, Y. (1997). Update rules for parameter estimation in Bayesian networks. In Proceedings of the Thirteenth Annual Conference on Uncertainty in AI (pp. 3-13). San Francisco: Morgan Kaufmann.
[3]
Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Belmont, MA: Athena Scientific.
[4]
Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge: Cambridge University Press.
[5]
Darroch, J. N., & Ratcliff, D. (1972). Generalized iterative scaling for log-linear models. Annals of Mathematical Statistics, 43, 1470-1480.
[6]
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1-38.
[7]
Diego, J. M., Tegmark, M., Protopapas, P., & Sandvik, H. B. (2007). Combined reconstruction of weak and strong lensing data with WSLAP. Monthly Notices of the Royal Astronomical Society, 375, 958-970.
[8]
Friess, T., Cristianini, N., & Campbell, C. (1998). The Kernel-Adatron algorithm: A fast and simple learning procedure for support vector machines. In Proceedings of the Fifteenth International Conference on Machine Learning (pp. 188-196). San Francisco: Morgan Kaufmann.
[9]
Kivinen, J., & Warmuth, M. (1997). Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132, 1-63.
[10]
Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects with nonnegative matrix factorization. Nature, 401, 788-791.
[11]
Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13 (pp. 556-562). Cambridge, MA: MIT Press.
[12]
Lin, Y., Lee, D. D., & Saul, L. K. (2004). Nonnegative deconvolution for time of arrival estimation. In Proceedings of the International Conference of Speech, Acoustics, and Signal Processing (ICASSP-2004) (Vol. 2, pp. 377-380). Piscataway, NJ: IEEE.
[13]
Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in kernel methods--Support vector learning (pp. 185-208). Cambridge, MA: MIT Press.
[14]
Saul, L. K., Sha, F., & Lee, D. D. (2003). Statistical signal processing with nonnegativity constraints. In Proceedings of the Eighth European Conference on Speech Communication and Technology (Vol. 2, pp. 1001-1004). Geneva, Switzerland.
[15]
Schölkopf, B., Sung, K., Burges, C., Girosi, E, Niyogi, P., Poggio, T., & Vapnik, V. (1997). Comparing support vector machines with gaussian kernels to radial basis function classiers. IEEE Transactions on Signal Processing, 45, 2758-2765.
[16]
Serafini, T., Zanghirati, G., & Zanni, L. (2005). Gradient projection methods for quadratic programs and applications in training support vector machines. Optimization Methods and Software, 20, 353-378.
[17]
Sha, F., Saul, L. K., & Lee, D. D. (2003a). Multiplicative updates for nonnegative quadratic programming in support vector machines. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 897- 904). Cambridge, MA: MIT Press.
[18]
Sha, F., Saul, L. K., & Lee, D. D. (2003b). Multiplicative updates for large margin classifiers. In Proceedings of the Sixteenth Annual Conference on Computational Learning Theory (COLT-03) (pp. 188-202). Berlin: Springer.
[19]
Vapnik, V. (1998). Statistical learning theory. New York: Wiley.
[20]
Wright, S. J. (1997). Primal-dual interior point methods. Philadelphia, PA: SIAM.
[21]
Zangwill, W. J. (1969). Nonlinear programming: A unified approach. Englewood Cliffs, NJ: Prentice Hall.

Cited By

View all
  • (2024)Towards enabling learnware to handle heterogeneous feature spacesMachine Language10.1007/s10994-022-06245-1113:4(1839-1860)Online publication date: 1-Apr-2024
  • (2023)Variable selection and regularization via arbitrary rectangle-range generalized elastic netStatistics and Computing10.1007/s11222-023-10240-433:3Online publication date: 26-Apr-2023
  • (2018)Self-representative manifold concept factorization with adaptive neighbors for clusteringProceedings of the 27th International Joint Conference on Artificial Intelligence10.5555/3304889.3305013(2539-2545)Online publication date: 13-Jul-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Neural Computation
Neural Computation  Volume 19, Issue 8
August 2007
295 pages

Publisher

MIT Press

Cambridge, MA, United States

Publication History

Published: 01 August 2007

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Towards enabling learnware to handle heterogeneous feature spacesMachine Language10.1007/s10994-022-06245-1113:4(1839-1860)Online publication date: 1-Apr-2024
  • (2023)Variable selection and regularization via arbitrary rectangle-range generalized elastic netStatistics and Computing10.1007/s11222-023-10240-433:3Online publication date: 26-Apr-2023
  • (2018)Self-representative manifold concept factorization with adaptive neighbors for clusteringProceedings of the 27th International Joint Conference on Artificial Intelligence10.5555/3304889.3305013(2539-2545)Online publication date: 13-Jul-2018
  • (2018)Regularized optimal transport and the rot mover's distanceThe Journal of Machine Learning Research10.5555/3291125.329114019:1(590-642)Online publication date: 1-Jan-2018
  • (2018)Adaptive structure concept factorization for multiview clusteringNeural Computation10.1162/neco_a_0105530:4(1080-1103)Online publication date: 1-Apr-2018
  • (2018)Hyper-graph regularized discriminative concept factorization for data representationSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-017-2636-122:13(4417-4429)Online publication date: 1-Jul-2018
  • (2017)Bridging video content and commentsProceedings of the Thirty-First AAAI Conference on Artificial Intelligence10.5555/3298239.3298473(1611-1617)Online publication date: 4-Feb-2017
  • (2017)Towards Unsupervised Gene SelectionIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2016.259154514:3(514-521)Online publication date: 1-May-2017
  • (2017)Graph-Regularized Local Coordinate Concept Factorization for Image RepresentationNeural Processing Letters10.1007/s11063-017-9598-246:2(427-449)Online publication date: 1-Oct-2017
  • (2016)Multi-class Support Vector Machine classifiers using intrinsic and penalty graphsPattern Recognition10.1016/j.patcog.2016.02.00255:C(231-246)Online publication date: 1-Jul-2016
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media