Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Occlusion in mirror-based co-located augmented reality systems

Published: 01 February 2006 Publication History

Abstract

This paper describes the incorporation of realistic occlusion effects into mirror-based, stereoscopic co-location augmented reality display systems. By adding a light-blocking device in the form of an LCD panel undemeath the semitransparent mirror, the view of the physical world can be selectively blocked out such that virtual objects can fully occlude physical objects. Furthermore, by discarding pixels of the virtual objects rendered on the reflected display, physical objects seen through the semitransparent mirror and the transmissive LCD panel appear to occlude these virtual objects. The governing principles of the approach are described, and two algorithmic approaches (model based and vision based) for scene reconstruction and the generation of the occlusion masks are presented. Finally, a prototype implementation of the system is presented.

References

[1]
Arsenault, R., & Ware, C. (2000). Eye-hand coordination with force feedback. In Chi 2000 Conference Proceedings, 408-414.
[2]
A.R.T. (2005). http://www.ar-tracking.de (Last accessed on August 19, 2005).
[3]
Bimber, O., & Frööhlich, B. (2002). Occlusion shadows: Using projected light to generate realistic occlusion effects for view-dependent optical see-through displays. In Proceedings of ISMAR 2002, 186-196.
[4]
Fuhrmann, A., Hesina, G., Faure, F., & Gervautz, M. (1999). Occlusion in collaborative augmented environments. In EGVE '99 Conference Proceedings, 179-190.
[5]
Hasenfratz, J. M., Lapierre, M., Gascuel, J.-D., & Boyer, E. (2003). Real-time capture, reconstruction and insertion into virtual world of human actors. In Vision, Video and Graphics Conference (VVG'03), 49-56.
[6]
Johnson, A., Sandin, D., Dawe, G., Qiu, Z., Thongrong, S., & Plepys, D. (2000). Developing the Paris: Using the Cave to prototype a new VR display. In CDROM Proceedings of the Immersive Projection Technology Workshop 2000 (IPT 2000).
[7]
Kiyokawa, K., Billinghurst, M., Campbell, B., & Woods, E. (2003). An occlusion-capable optical see-through head mount display for supporting co-located collaboration. In Proceedings of ISMAR 2003, 133-141.
[8]
Kiyokawa, K., Kurata, Y., & Ohno, H. (2000). An optical see-through display for mutual occlusion of real and virtual environments. In Proceedings of ISAR 2000, 60-67.
[9]
Li, M., Magnor, M., & Seidel, H.-P. (2003). Hardware-accelerated visual hull reconstruction and rendering. In Graphics Interface 2003, 65-71.
[10]
Lok, B. (2001). Online model reconstruction for interactive virtual environments. In Proceedings of ACM 2001 Symposium on Interactive 3D Graphics, 69-72.
[11]
Lok, B., Naik, S., Whitton, M., & Brooks, F., Jr. (2003a). Effects of handling real objects and avatar fidelity on cognitive task performance in virtual environments. In Proceedings of IEEE Virtual Reality 2003, 125-132.
[12]
Lok, B., Naik, S., Whitton, M., & Brooks, F., Jr. (2003b). Incorporating dynamic real objects into virtual environments. In Proceedings of ACM 2003 Symposium on Interactive 3D Graphics, 31-41.
[13]
Mason, A. H., Walji, M. A., Lee, E. J., & MacKenzie, C. L. (2001). Reaching movements to augmented and graphic objects in virtual environments. In Chi 2001 Conference Proceedings , 426-433.
[14]
Matusik, W., Buehler, C., & McMillan, L. (2001). Polyhedral visual hulls for real-time rendering. In Proceedings of the Eurographics Workshop on Rendering 2001, 115-125.
[15]
Matusik, W., Buehler, C., Raskar, R., McMillan, L., & Gortler, S. (2000). Image-based visual hulls. In Computer Graphics SIGGRAPH 2000 Proceedings, 34, 369-374.
[16]
Mulder, J. D., & Boschker, B. R. (2004). A modular system for collaborative desktop VR/AR with a shared workspace. In Proceedings of the IEEE Virtual Reality Conference 2004, 75-82.
[17]
Mulder, J. D., Jansen, A. J., & Van Rhijn, A. (2003). An affordable optical head tracking system for desktop VR/AR systems. In LPT/EGVE 2003 Proceedings, 215-223.
[18]
Mulder, J. D., & Van Liere, R. (2002). The personal space station: Bringing interaction within reach. In VRIC 2002 Conference Proceedings, 73-81.
[19]
NuVision. (2005). http://www.nuvision3d.com (Last accessed on August 19, 2005).
[20]
Poston, T., & Serra, L. (1996). Dextrous virtual work. C4CM, 39(5), 37-45.
[21]
Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., & Fuchs, H. (1998). The office of the future: A unified approach to image based modeling and spatially immersive displays. In Computer Graphics SIGGRAPH '98 Proceedings, 32, 179-188.
[22]
ReachIn. (2005). http://www.reachin.se (Last accessed on August 19, 2005).
[23]
Schmandt, C. (1983). Spatial input/display correspondence in a stereoscopic computer graphic work station. Computer Graphics, 17(3), 253-261.
[24]
Schwald, B., Seibert, H., & Weller, T. (2002). A flexible tracking concept applied to medical scenarios using an AR window. In Proceedings of ISMAR 2002, 261-262.
[25]
Serra, L., Hern, N., Choon, C., & Poston, T. (1997). Interactive vessel tracing in volume data. In Proceedings of the 1997 Symposium on Interactive 3D Graphics, 131-137.
[26]
Van Liere, R., & Mulder, J. D. (2003). Optical tracking using projective invariant marker pattern properties. In Proceedings of the IEEE Virtual Reality Conference 2003, 191-198.
[27]
VRex. (2005). http://www.vrex.com (Last accessed on August 19, 2005).
[28]
Ware, C., & Rose, J. (1999). Rotating virtual objects with real handles. ACM Transactions on CHI, 6(2), 162-180.
[29]
Wiegand, T., Schloerb, D. W., & Sachtler, W. L. (1999). Virtual workbench: Near field virtual environment system with applications. Presence: Teleoperators and Virtual Environments, 8(5), 492-519.
[30]
Yang, R., Welch, G., & Bishop, G. (2002). Real-time consensus-based scene reconstruction using commodity graphics hard-ware. In Proceedings of Pacific Graphics, 225-235.
[31]
Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Presence: Teleoperators and Virtual Environments
Presence: Teleoperators and Virtual Environments  Volume 15, Issue 1
Special issue: IEEE VR 2005
February 2006
121 pages

Publisher

MIT Press

Cambridge, MA, United States

Publication History

Published: 01 February 2006

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Oct 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media