Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

GPU-assisted energy asynchronous diffusion parallel computing model for soft tissue deformation simulation

Published: 01 November 2014 Publication History

Abstract

Soft tissue deformation simulation is a key technology of virtual surgical simulation. In this work, we present a graphics processing unit (GPU)-assisted energy asynchronous diffusion parallel computing model which is stable and fast in processing complex models, especially concave surface models. We adopt hexahedral voxels to represent the physical model of soft tissue to improve the visual realistic quality and computing efficiency of deformation simulation. We also adopt the concept of free boundary to simulate soft tissue geometric characteristics more precisely during the deformation process and introduce asynchronous diffusion by using the mechanical energy of mass points to achieve realistic soft tissue deformation effects. In order to meet the requirement of real-time surgery simulation, we accelerate the soft tissue deformation by using OpenCL (Open Computing Language) and optimize the parallel computing process in several means. Experimental results have shown that the GPU-assisted energy asynchronous diffusion parallel computing model for soft tissue deformation simulation implements satisfactory effects on deformation in visual realistic and real-time quality.

References

[1]
Choi C,Kim J,Han H,Ahn B,Kim J.Graphic and haptic modelling of the oesophagus for VR-based medical simulation.Int J Med Robot. 2009;5 (3): 257-266
[2]
Alterovitz R,Goldberg KY,Pouliot J,Hsu IC.Sensorless motion planning for medical needle insertion in deformable tissues.IEEE Trans Inf Technol Biomed. 2009;13 (2): 217-225
[3]
Courtecuisse H,Jung H,Allard J,Duriez C,Lee DY,Cotin S.GPU-based real-time soft tissue deformation with cutting and haptic feedback.Prog Biophys Mol Biol. 2010;103 (2-3): 159-168
[4]
Ghali BAlgorithms for Nonlinear Finite Element-based Modeling of Soft-tissue Deformation and Cutting. Canada: McMaster University, Hamilton, Ontario; 2008:
[5]
Nakao MCardiac Surgery Simulation with Active Interaction and Adaptive Physics-Based Modeling. Kyoto, Japan: Kyoto University; 2003:
[6]
Schulze F,Bühler K,Neubauer A,Kanitsar A,Holton L,Wolfsberger S.Intra-operative virtual endoscopy for image guided endonasal transsphenoidal pituitary surgery.Int J Comput Assist Radiol Surg. 2010;5 (2): 143-154
[7]
Nealen A,Müller M,Keiser R,Boxerman E,Carlson M.Physically based deformable models in computer graphics.Computer Graphics Forum. 2006;25 (4): 809-836
[8]
Si W,Yuan Z,Liao X,Duan Z,Ding Y,Zhao J.3D soft tissue warping dynamics simulation based on force asynchronous diffusion model.J Comput Animation Virtual Worlds. 2011;22 (2-3): 251-259
[9]
Koçak U,Palmerius KL,Cooper M.Dynamic deformation using adaptable, linked asynchronous FEM regions.Proceedings of the 2009 Spring Conference on Computer Graphics; <confdate/>Budmerice, Slovakia; <confdate/>. 197.
[10]
Nesme M,Kry PG,Jeřábková L,Faure F.Preserving topology and elasticity for embedded deformable models.ACM Trans Graphics. 2009;28 (3):
[11]
Kharevych L,Mullen P,Owhadi H,Desbrun M.Numerical coarsening of inhomogeneous elastic materials.ACM Trans Graphics. 2009;28 (3):
[12]
Mosbech TH,Ersbll BK,Christensen LB.An efficient data-driven tissue deformation model.IEEE 12th International Conference on Computer Vision Workshops; 2009; 2009. 1771.
[13]
Faure F,Gilles B,Bousquet G,Pai DK.Sparse meshless models of complex deformable solids.ACM Trans Graphics. 2011;30 (4):
[14]
Barbi¿ J,James DL.Real-time subspace integration for St.Venant-Kirchhoff deformable models.ACM Trans Graphics. 2005;24 (3): 982-990
[15]
Marchesseau S,Heimann T,Chatelin S,Willinger R,Delingette H.Fast porous visco-hyperelastic soft tissue model for surgery simulation: application to liver surgery.Prog Biophys Mol Biol. 2010;103 (2-3): 185-196
[16]
Zhu Y,Sifakis E,Teran J,Brandt A.An efficient multigrid method for the simulation of high-resolution elastic solids.ACM Trans Graphics. 2010;29 (2):
[17]
Gilles B,Bousquet G,Faure F,Pai DK.Frame-based elastic models.ACM Trans Graphics. 2011;30 (2):
[18]
Hecht F,Lee YJ,Shewchuk JR,O'Brien JF.Updated sparse Cholesky factors for corotational electrodynamics.ACM Trans Graphics. 2012;31 (5):
[19]
Hildebrandt K,Schulz C,Von Tycowicz C,Polthier K.Interactive surface modeling using modal analysis.ACM Trans Graphics. 2011;30 (5):
[20]
San-Vicente G,Aguinaga I,Celigueta JT.Cubical mass-spring model design based on a tensile deformation test and nonlinear material model.IEEE Trans Visualiz Comput Graphics. 2002;18 (2): 228-241
[21]
Gao L,Lai Y-K,Huang Q-X,Hu S-M.A data-driven approach to realistic shape morphing.Computer Graphics Forum. 2013;32 (2 Part 4): 449-457
[22]
García FG,Paradinas T,Coll N,Patow G.* Cages: a multilevel, multi-cage-based system for mesh deformation.ACM Trans Graphics. 2013;32 (3):
[23]
Tang M,Manocha D,Otaduy MA,Tong R.Continuous penalty forces.ACM Trans Graphics. 2012;31 (4):
[24]
Kaufman DM,Edmunds T,Pai DK.Fast frictional dynamics for rigid bodies.ACM Trans Graphics. 2005;24 (3): 946-956
[25]
Müller M,Chentanez N.Solid simulation with oriented particles.ACM Trans Graphics. 2011;30 (4):
[26]
Breitbart J,Fohry C.OpenCL - an effective programming model for data parallel computations at the Cell Broadband Engine.Proceedings of the 2010 IEEE International Symposium on Parallel and Distributed Processing, Workshops and PhD Forum; 2010; 2010. .
[27]
Yuan Z,Si W,Liao X, et al.Parallel computing of 3D smoking simulation based on OpenCL heterogeneous platform.J Supercomputing. 2012;61 (1): 84-102
[28]
Tasora A,Negrut D,Anitescu M.Large-scale parallel multibody dynamics with frictional contact on the graphical processing unit.Proc IMechE K: J Multi-body Dynam. 2008;222 (4): 315-326
[29]
Harada T.A parallel constraint solver for a rigid body simulation.SIGGRAPH Asia 2011 Sketches. 2011;:
[30]
Tonge R,Benevolenski F,Voroshilov A.Mass splitting for jitter-free parallel rigid body simulation.ACM Trans Graphics. 2012;31 (4):
[31]
Owens JD,Houston M,Luebke D,Green S,Stone JE,Phillips JC.GPU computing.Proc IEEE. 2008;96 (5): 879-899
[32]
Fatahalian K,Sugerman J,Hanrahan P.Understanding the efficiency of GPU algorithms for matrix-matrix multiplication.HWWS '04 Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware; 2004; 2004. 133.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Simulation
Simulation  Volume 90, Issue 11
November 2014
93 pages

Publisher

Society for Computer Simulation International

San Diego, CA, United States

Publication History

Published: 01 November 2014

Author Tags

  1. deformation simulation
  2. energy asynchronous diffusion
  3. parallel computing

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media